1 |
Stereoselective Olefin Cross-Metathesis of α,β,γ,δ-Unsaturated Phenyl EstersJohnson, Brett Michael January 2015 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. Catalytic olefin metathesis has developed into a powerful tool in the arsenal of the synthetic chemist as a quick and reliable method to build complexity in biologically active molecules. One particular subset of this class of reactions, catalytic olefin cross-metathesis, has seen great strides within the last decade. Using recently reported well-defined catalysts, chemists have been able to synthesize olefins in a stereoselective fashion via this reaction in a laboratory setting. While many classes of Z olefins have succumbed to this transformation, one class of olefins that has not been synthesized in a selective manner is that of Z-unsaturated esters, precious motifs found in a myriad of natural products. Traditional preparations of Z-acrylates and Z-dienoates are presented drawing examples from both total syntheses as well as method development reports. Chapter 2. A catalytic olefin cross-metathesis reaction utilizing E-dienoates as substrates is presented. A large variety of functionalized (E,Z)-dienoates are prepared in high yields and high stereoselectivities. This method has many advantages over more common methods of making these motifs, such as a wider substrate scope and the ability to be performed at ambient temperature. / Thesis (MS) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
2 |
A concise and straightforward approach to total synthesis of (+)-Strictifolione and formal synthesis of Cryptofolione via a unified strategyLi, X., Wang, G., Zhang, Z., Wu, Na, Yang, Q., Huang, S., Wang, X. 26 May 2020 (has links)
Yes / We describe a concise and straightforward approach to the total syntheses of (+)-Strictifolione and Cryptofolione in the longest linear sequences of four steps and six steps from 3-phenyl propanal and trans-cinnamaldehyde, respectively. The route utilized a titanium tetraisopropoxide/(R)-[1,1'-binaphthalene]-2,2'-diol catalyzed Mukaiyama aldol reaction, indium(0)-promoted Barbier reaction, and olefin cross-metathesis as the key reactions. / National Science Foundation of China [21062088, 21562020, and 21462004], the Science and Technology Plan Project of Jiangxi Province [No. 20151BBG70028, 20142BBE50006] and State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources [CMEMR2014-A04] for the funding support.
|
3 |
Practical and stereoselective synthesis of alkenes through catalytic cross-metathesisNguyen, Thach Truc January 2018 (has links)
Thesis advisor: Amir H. Hoveyda / Abstract Chapter 1: Development of Efficient and Kinetically E-Selective Cross-Metathesis to Generate Alkenyl Halides We have devised a broadly applicable strategy to achieve kinetically E-selective cross-metathesis to generate a valuable set of E-alkenyl chlorides and fluorides in high efficiency. The synthetic utility was demonstrated through several concise syntheses of E-alkenyl chloride and fluoride precursors to biologically active molecules. The design principles delineated in this study are expected to initiate a wider range of efficient and kinetically controlled E-selective olefin metathesis processes where there is a diminished preference for the E isomer such as macrocyclic ring-closing metathesis. Chapter 2: Development of Efficient and Kinetically E-Selective Macrocyclic Ring-Closing Metathesis We devised a strategy to achieve high E selectivity in ring-closing metathesis to afford E-macrocyclic alkenes of various ring sizes regardless of the associated thermodynamic preferences. The key findings revealed that E-alkenylB(pin), widely recognized for its broad use in catalytic cross-coupling chemistry, possesses the appropriate steric and electronic attributes to serve as a suitable cross-partner in ring-closing metathesis with Mo alkylidenes. Synthetic utility was demonstrated through ring-closing metathesis at a late stage of a multi-step route. The investigation described herein offers a practical solution to a compelling problem in olefin metathesis, further elevating the utility of this widely used transformation. Chapter 3: Stereoselective Synthesis of E- and Z-Trisubstituted Alkenes by Combining Stereoretentive Catalytic Cross-Metathesis and Catalytic Cross-Coupling We introduced a general solution to a longstanding and compelling problem in olefin metathesis: a broadly applicable strategy for the reliable and efficient synthesis of acyclic E- and Z-trisubstituted alkenyl halides. Complications resulted from the formation of an unstable methylidene species or less reactive disubstituted alkylidene complexes can be addressed by utilizing a stereo-defined E- or Z-trisubstituted alkene and a 1,2-disubstituted olefin as substrates. By merging two central catalytic transformations in organic synthesis, cross-coupling and CM, various E- or Z-trisubstituted alkenyl chloride and bromides were readily accessed by the same catalytic system without the need for directing groups. The synthetic utility of the present protocol was demonstrated through several concise and efficient synthesis of biologically active natural products/synthetic precursors. Notably, the E- or Z-trisubstituted alkenyl halides prepared by CM may be readily converted to other trisubstituted olefins with complete retention of stereochemical purity by means of a second cross-coupling reaction. Based on the new findings, we revisited previously unaddressed problems and establish that readily available isoprenoid alkenes can serve as a suitable surrogate for unhindered terminal alkenes in CM. Chapter 4: In situ Protection/Deprotection for Catalytic Olefin Metathesis in the Presence of Polar Protic Functional Groups We demonstrated that protic groups such as alcohols and carboxylic acids that are problematic with high-oxidation-state alkylidenes could be effectively masked in situ prior to CM reactions by an appropriate borane reagent. The commercial sample of alkenes that are usually contaminated with protic impurities could be ‘purified’ in situ by a sub-stoichiometric amount of pinacolborane. Deprotection of the in situ boron-based protecting group proceeded under mild conditions and could be performed in the same vessel. The one-pot protection/cross-metathesis/deprotection of alcohol and carboxylic acid-containing alkenes described herein is likely to have an impact on the diversity of organic molecules that can be prepared in a laboratory setting. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
4 |
Application de la réaction de métathèse d'oléfines à l'obtention de molécules d'intérêt biologique / Application of the olefin metathesis reaction to obtain molecules of biological interestRaffier, Ludovic 07 November 2012 (has links)
La formation de liaisons C-C constitue un sujet de recherche primordial en chimie organique. Parmitoutes les techniques existantes, la métathèse d’oléfines a constitué une véritable révolution, notamment grâceau développement de catalyseurs efficaces et tolérants vis-à-vis de bon nombre de groupements fonctionnels.Cette réaction a été envisagée ici sur trois cibles d’intérêt biologique : la diospongine A, la nhatrangine A et leberkeleyamide A.De nombreuses molécules naturelles bioactives appartiennent aux familles des 1,7-diarylheptanoïdes et1,9-diarylnonanoïdes. Issue de la première, la diospongine A a dévoilé des propriétés anti-ostéoporotiquesprometteuses. A l’inverse, aucun produit naturel 1,8-diaryloctanoïde n’a encore été rapporté. Désireux d’étudier lapotentielle activité de tels composés, plusieurs séries d’homologues de la diospongine A ont été synthétisées,impliquant la formation d’intermédiaires tétrahydropyraniques communs par cyclisation de Prins, suivi d’uneséquence métathèse croisée / oxydation de Wacker, permettant ainsi l’introduction de la diversité chimique.La nhatrangine A, récemment isolée de la cyanobactérie Lyngbya majuscula, a montré une potentielleactivité contre la lignée cancéreuse CoL-2. Aucune synthèse n’ayant encore été rapportée, quatre déconnectionsont ici été envisagées, impliquant respectivement une métathèse cyclisante, une métathèse croisée, une additionde Michael énantiosélective organocatalysée ou encore une alkylation diastéréosélective selon Myers commeétape clé. Toutes ces approches ont en commun l’utilisation d’une réaction de trans aldolisation. Un intermédiaireavancé a ainsi pu être synthétisé.Le berkeleyamide A, isolé du champignon Penicillium rubrum, est une molécule possédant une activitéinhibitrice micromolaire des enzymes MMP-3 et caspases-1, impliquées notamment dans la croissance descellules cancéreuses. Trois synthèses de ce composé sont déjà décrites dans la littérature, toutes démarrant dupool chiral. Deux approches « rétron » sont ici proposées, impliquant notamment une allylation diastéréosélectived’imine, une métathèse croisée et une cyclisation de type Heck. Le squelette carboné de la molécule a ainsi étéobtenu. / C-C bond formation constitutes a key research field of organic chemistry. Among all existing techniques, olefinmetathesis turned out to be a revolution, especially since efficient and functional groups tolerant catalysts havebeen developed. Herein, the application of this reaction has been considered to three targets of biological interest:diospongin A, nhatrangin A and berkeleyamide A.Numerous bioactive natural products belong to 1,7-diarylheptanoïd or 1,9-diarylnonanoïd families.Springing from the first one, diospongin A revealed promising anti-osteoporotic properties. Conversely, no naturalproduct from 1,8-diaryloctanoïds has been reported to date. Willing to study the potential activity of suchcompounds, several diospongin A homologues series have been synthesized, involving especially a Prinscyclisation for the formation of a common tetrahydropyran scaffold, followed by a cross metathesis / Wackeroxidation sequence, for the introduction of the chemical diversity.Nhatrangin A, recently isolated from the cyanobacteria Lyngbya majuscula, has showed a potentialactivity against the CoL-2 human cancer cell line. As no total synthesis of this molecule has been reported todate, four disconnections have been considered herein, respectively involving a ring closing metathesis, a crossmetathesis, an enantioselective organocatalysed Michael addition or a Myers diastereoselective alkylation as keystep. All these approaches have in common the use of a trans aldol reaction. An advanced intermediate has thusbeen obtained.Berkeleyamide A, isolated from the fungus Penicillium rubrum, possess a micromolar inhibitive activitytoward MMP-3 and caspases-1 enzymes, taking part in particular in cancer cells growth. Three total synthesis ofthis molecule have already been reported, all sharing to start from the chiral pool. Two “retron” approaches havebeen considered herein, involving especially an imine diastereoselective allylation, a cross metathesis and a Hecktype cyclisation. This led to the obtaining of the carbon backbone of the molecule.
|
5 |
Stereoselective Olefin Metathesis Reactions for Natural Product SynthesisYu, Miao January 2014 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. The first examples of highly Z- and enantioselective ring-opening/cross-metathesis reactions are disclosed. Transformations involve meso cyclic olefin substrate and styrenes or enol ethers as olefin cross partners. A stereogenic-at-Mo monoaryloxide monopyrrolide (MAP) complex, prepared and used in situ, is discovered for the efficient formation of Z olefins. Such complex, bearing a relatively smaller adamantylimido and a larger chiral aryloxide ligand, leads to kinetic Z-selectivity due to the size differential. In most cases, the resulting disubstituted Z olefins are formed with excellent stereoselectivity (>95% Z). Chapter 2. The protocols for efficient Z-selective formation of macrocyclic disubstituted alkenes through catalytic ring-closing metathesis (RCM) is described. Stereoselective cyclizations are performed with either Mo- or W-based monoaryloxide monopyrrolide (MAP) complex at 22 oC. Synthetic utility of such broadly applicable transformation is demonstrated by synthesis of several macrocyclic natural products: relatively simpler molecules such as epilachnene (91% Z) and ambrettolide (91% Z), as well as advanced precursors to epothilones C and A (97% Z) and nakadomarin A (94% Z). Several principles of catalytic stereoselective olefin metathesis reactions are summarized based on the studies: 1) Mo-based catalysts are capable of delivering high activity but can be more prone to post-RCM isomerization. 2) W-based catalysts, though furnish lower activity, are less likely to cause the loss of kinetic Z selectivity by isomerization. 3) Reaction time is critical for retaining the stereoselectivity gained from kinetic, which not only applicable with MAP complexes but potentially with other complexes as well. 4) By using W-based catalyst, polycyclic alkenes can be accessed with sequential RCM reactions, without significant erosion of the existing Z olefins in the molecule. Chapter 3. An enantioselective total synthesis of anti-proliferative agent (+)-neopeltolide is presented. The total synthesis is accomplished in 11 steps for the longest linear sequence and 28 steps in total, including 8 catalytic reactions. Particularly, several Mo- or Ru-catalyzed stereoselective olefin metathesis reactions as well as N-hetereocyclic carbene (NHC)-catalyzed enantioselective boron conjugate addition to an acyclic enoate have proven to be effective for convergent construction of the molecule. The most important novelty of the study incorporates the explorations of feasibility of Z-selective cross-metathesis reactions to solve the challenge of installing two Z olefins with excellent selectivity. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
6 |
Stereoselective Olefin Metathesis Reactions Catalyzed by Molybdenum Monoaryloxide Monopyrrolide ComplexesMann, Tyler J. January 2016 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1: Efficient Z-Selective Cross-Metathesis of Secondary Allylic Ethers Efficient Z-selective cross-metathesis of secondary allylic ethers were catalyzed by monoaryloxide monopyrrolide molybdenum complexes. Reactions involving both silyl and benzyl protected ethers were demonstrated, as well as ethers containing alkyl, aryl and alkynyl substituents. Mechanistic studies were performed, and the reactions were applied to the total synthesis of several ene-diyne natural products. Chapter 2. Stereoselective Total Synthesis of Disorazole C1 The stereoselective total synthesis of disorazole C1 is reported. The synthesis was completed in 12 longest linear steps. Our synthesis demonstrates the utility of Z-selective cross-metathesis to form both alkenyl borons and alkenyl halides. Another key transformation was a one-pot Suzuki-dimerization reaction to form a symmetric 30 membered ring in relatively high yield. Chapter 3. Stereoselective Cross-Metathesis to Form Trisubstituted Alkenes Initial studies into the stereoselective formation of trisubstituted olefins through molybdenum catalyzed cross-metathesis have been performed. Our mechanistic understanding of the reaction lead us to focus on the synthesis of alkenyl halides, which can be obtained in up 90% yield and 75:25 E:Z selectivity. Chapter 4: Ring-Closing Metathesis in the Synthesis of Natural Products Development of highly efficient and selective ring-closing metathesis reactions have enabled collaborators to successfully implement routes in total synthesis endeavors. A diastereoselective seven-membered ring-closing metathesis enabled the successful synthesis of (±)-tetrapetalone A methyl-aglycon. An enantioselective ring-closing metathesis to form a six membered ring has provided access to enantioenriched aspidosperma alkaloids. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
7 |
Development of real-time mechanistic tools for the elucidation of catalytic reaction mechanismsStoddard, Rhonda Louise 15 August 2014 (has links)
The mechanism of a conjugate addition of an alcohol to an alkynic acid ester using a phosphine catalyst was investigated using pressurized sample infusion electrospray ionization mass spectrometry (PSI-ESI-MS) and proton and phosphorus nuclear magnetic resonance (NMR) experiments. Since ESI-MS only detects charged species, and only the phosphonium intermediates and by-products were visible by ESI-MS, 1H NMR was used to track the disappearance of the starting alkyne and the appearance of the conjugate addition product over time. 31P NMR was used to quantify the ESI-MS results. By-product formation was shown to out-compete product formation upon fast addition of alkyne, but with dropwise addition of alkyne, product was shown to dominate. A detailed numerical model was developed using PowerSim software to test mechanistic hypotheses. The experimental results were shown to be consistent with the mechanism proposed by Inanaga, and the cycle was elaborated to account for by-product formation.
Piers’catalyst, a ruthenium complex with a phosphonium-functionalized carbene ligand, is a fast-initiating living catalyst for a number of olefin metathesis reactions, including ring-opening metathesis polymerization (ROMP) and cross metathesis (CM). Catalyst speciation was monitored in real-time for the ROMP of norbornene and the CM of 1-hexene using PSI-ESI-MS. The expected mass distribution of charged polymer-catalyst species were not observed, but merely catalyst and decomposition species were visible by ESI-MS. NMR and gel permeation chromatography (GPC) were used to determine quantitatively the presence of polymer and the polydispersity index, respectively. The results suggest that while Piers’ catalyst is indeed fast-initiating, the propagation rate greatly outstrips the initiation rate.
In a foray into the area of chemical education, a well-known pH-induced colour change exhibited by the anthocyanins in red cabbage was developed into a simple – and ingestible – classroom demonstration. / Graduate / 0485
|
8 |
Modification of poly(lactic acid) via olefin cross-metathesisSinclair, Fern January 2017 (has links)
Poly(lactic acid), PLA, is a viable replacement to petroleum derived polymers due to its renewable feedstock, biodegradability and bioassimilability, yet improvements in its physical, thermal and mechanical properties are required before it can fully enter all commodity markets. This thesis investigates olefin cross-metathesis (CM) as a synthetic strategy to modify the properties of PLA. The use of novel lanthanide and actinide catalysts on the microstructure control of PLA are also explored. The Tebbe reagent was used in a new synthetic strategy to produce a novel olefin derivative of lactide (MML). Olefin CM of MML with hex-1-ene was successful but polymerisation pre- and post-CM was unsuccessful due to monomer instability. CM of another olefin derivative of lactide, 3-methylenated lactide (3-ML) was successful with aliphatic alkenes; hex-1-ene to dodec-1-ene. To overcome competing alcoholysis of the functionalised monomers, which prevented polymerisation, hydrogenation was used to remove the olefin entity followed by successful ring-opening polymerisation (ROP) to produce polymers of low glass-transition temperatures (Tg). Post-polymerisation CM on an olefin containing polymer P(β-heptenolactone) P(β-HL), with methyl acrylate and an epoxide, generated functionalised homopolymers with increased Tg’s. Co-polymerisation of lactide with β-HL generated novel gradient-copolymers. Olefin CM with 15 different cross-partners produced functionalised copolymers with different thermal properties. Based on this route a new methodology was created to introduce two unique functionalities into the polymer backbone by manipulation of the olefin reactivities. Finally, in a collaborative project, uranium and cerium catalysts, Me3SiOU(OArP)3 and Me3SiOCe(OArP)3 - designed out-with the group- were tested and compared as ROP catalysts for lactide. Both catalysts were active in living polymerisations of L-lactide and under immortal conditions the activity and rates of the catalysts were switched, accounted for by a change in the coordination sphere due to ligand displacement. ROP of rac-lactide using the uranium analogue produced heterotactic-biased PLA with a Pr = 0.79.
|
9 |
Métathèse croisée d'alcènes contenant des N-hétéroaryles. Trifluorométhylation d'ène-carbamates cycliques et dérivés / Cross-metathesis of aleknes containing N-heteroaryles. Trifluoromethylation of cyclic ene-carbamates and derivativesLafaye, Kévin 16 November 2015 (has links)
La métathèse d'oléfines est une des réactions les plus efficaces pour former des liaisons carbone-carbone et elle est maintenant utilisée pour synthétiser une large gamme de composés tels que des polymères, des produits issus de la pétrochimie, des produits pharmaceutiques ou des molécules naturelles. Une large gamme de groupes fonctionnels est tolérée comme des alcools, des amides, des carbamates et des sulfonamides. Cependant, des limites restent à surmonter comme la présence de N-hétéroaryles enrichis qui désactivent le catalyseur par coordination au centre métallique et/ou réagissent avec les intermédiaires. Nous décrivons dans ce manuscrit que le choix du substituant approprié d'une pyridine contenant une oléfine permet à la métathèse croisée d'avoir lieu et cette méthode a été appliquée à d'autres N-hétéroaryles.Outre les N-hétéroaryles, les composés fluorés sont largement utilisés en chimie médicinale, en agrochimie et dans le domaine des matériaux. Parmi ces composés fluorés, le groupement trifluorométhyle est le motif le plus utilisé. En effet, comparés à leurs analogues non fluorés, les composés possédant un groupement trifluorométhyle ont souvent de meilleures propriétés biologiques. C'est pourquoi il est intéressant de développer de nouvelles méthodes d'introduire ce groupement sur des molécules organiques, plus particulièrement des hétérocycles azotés. Dans ce but, nous avons développé une nouvelle méthode de trifluorométhylation d'ènes-carbamates cycliques pour accéder à des pipéridines, tétrhydropyridines et dihydropyridines trifluorométhylées. / Has now been applied to the synthesis of a wide range of compounds such as polymers, petrochemicals, pharmaceuticals and naturals compounds. A large range of functional groups are well tolerated including alcohols, amides, carbamates and sulfonamides. However, some limitations still have to be overcome Olefin metathesis has emerged has one of the most efficient carbon-carbon bond forming reaction and such as rich N-heteroaryles which are probably causing desactivation of the ruthenium catalyst by coordination of the metal center and/or reacting with the intermediates. We describe in this manuscript that a suitable choice of the 2-substituent olefinic substituted pyridine allows the cross-metathesis to occur and the method has been applied to others N-heteroaryles. Apart from N-heteroaryles, fluorinated compounds are widely used in pharmaceuticals, agrochemicals and materials. Among the organofluorides, the trifluoromethyl group is the most important motif used. In fact, compared to their non-fluorinated counterpart, trifluoromethylated compounds often show enhanced biological properties. Thus, new ways to introduce trifluoromethyl group into organic molecules, especially nitrogen heterocycles, are of keen interest. In this aim, we have developed a new method to introduce the trifluoromethyl moiety onto various cyclic ene-carbamates to access trifluoromethylated piperidines, tetrahydropyridines and dihydropyridines.
|
10 |
New Ru-Based Catalysts and Strategies for Kinetically Controlled Stereoselective Olefin Metathesis:Xu, Chaofan January 2020 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. In Situ Methylene Capping: A Key Strategy in Catalytic Stereoretentive Olefin MetathesisA general approach for in situ methylene capping that significantly expands the scope of catalyst-controlled stereoselective olefin metathesis is presented. By incorporation of stereodefined 2-butene as the capping reagent, the catechothiolate Ru complex is enabled to catalyze olefin metathesis reactions of terminal alkenes. Substrates bearing a carboxylic acid, an aldehyde, an aryl substituent, an α substituent were thus converted to the desired products in 47–88% yield and 90:10–98:2 Z:E selectivity. The capping strategy was also applied in ring-closing metathesis reactions leading to 14- to 21-membered macrocyclic alkenes (96:4–98:2 Z:E). The utility of this method was highlighted through synthesis of a platelet aggregate inhibitor and two members of the prostaglandin family compounds by cross-metathesis reaction, as well as a strained 14-membered ring stapled peptide by macrocyclic ring-closing metathesis. Examples of the corresponding E-selective cross-processes are provided as well. Chapter 2. Synthesis of Z- or E-Trisubstituted Allylic Alcohols and Ethers by Kinetically Controlled Catalytic Cross-MetathesisKinetically controlled Ru-catalyzed cross-metathesis reactions that generate Z- or E-trisubstituted alkenes are discussed. Reactions were catalyzed by catechothiolate Ru complex to generate trisubstituted allylic alcohols and ethers in up to 81% yield and >98% stereoisomeric purity. The approach is applicable to synthesis of products containing an alcohol, an aldehyde, a carboxylic acid or an alkenyl substituent. Mechanistic models that account for the observed trends in efficiency and stereoselectivity will be provided. Chapter 3. A New Ru-Based Catechothiolate Complex Bearing an Unsaturated NHC Ligand for Synthesis of Z-α,β-Unsaturated Carbonyl Compounds by Cross Metathesis Design and development of a new Ru catechothiolate complex that may be used to promote Z-selective cross-metathesis transformations that afford Z-α,β-unsaturated esters, acids, and amides (including Weinweb amides) are discussed. Comparison between Ru catechothiolate complexes with an unsaturated NHC and a saturated NHC ligand will be provided. Utility of the approach is demonstrated by an eight-step synthesis (15% overall yield) of an intermediate for synthesis of stagonolide E, and a five-step synthesis of a precursor to dihydrocompactin / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
Page generated in 0.0861 seconds