Spelling suggestions: "subject:"crossentropy"" "subject:"correntropy""
1 |
Growing, pruning and the structure of local regions in the hierarchical mixtures of experts and the mixtures of expertsWhitworth, Charles C. January 1997 (has links)
No description available.
|
2 |
Feature Extraction Based on Space Folding Model and Application to Machine LearningFuruhashi, Takeshi, Yoshikawa, Tomohiro, Tachibana, Kanta, Minh Tuan Pham January 2010 (has links)
Session ID: TH-F3-4 / SCIS & ISIS 2010, Joint 5th International Conference on Soft Computing and Intelligent Systems and 11th International Symposium on Advanced Intelligent Systems. December 8-12, 2010, Okayama Convention Center, Okayama, Japan
|
3 |
Parallel and Sequential Monte Carlo Methods with ApplicationsGareth Evans Unknown Date (has links)
Monte Carlo simulation methods are becoming increasingly important for solving difficult optimization problems. Monte Carlo methods are often used when it is infeasible to determine an exact result via a deterministic algorithm, such as with NP or #P problems. Several recent Monte Carlo techniques employ the idea of importance sampling; examples include the Cross-Entropy method and sequential importance sampling. The Cross-Entropy method is a relatively new Monte Carlo technique that has been successfully applied to a wide range of optimization and estimation problems since introduced by R. Y. Rubinstein in 1997. However, as the problem size increases, the Cross-Entropy method, like many heuristics, can take an exponentially increasing amount of time before it returns a solution. For large problems this can lead to an impractical amount of running time. A main aim of this thesis is to develop the Cross-Entropy method for large-scale parallel computing, allowing the running time of a Cross-Entropy program to be significantly reduced by the use of additional computing resources. The effectiveness of the parallel approach is demonstrated via a number of numerical studies. A second aim is to apply the Cross-Entropy method and sequential importance sampling to biological problems, in particular the multiple change-point problem for DNA sequences. The multiple change-point problem in a general setting is the problem of identifying, given a particular sequence of numbers/characters, a point along that sequence where some property of interest changes abruptly. An example in a biological setting, is identifying points in a DNA sequence where there is a significant change in the proportion of the nucleotides G and C with respect to the nucleotides A and T. We show that both sequential importance sampling and the Cross-Entropy approach yield significant improvements in time and/or accuracy over existing techniques.
|
4 |
Advances in Cross-Entropy MethodsThomas Taimre Unknown Date (has links)
The cross-entropy method is an established technique for solving difficult estimation, simulation, and optimisation problems. The method has its origins in an adaptive importance sampling procedure for rare-event estimation published by R. Y. Rubinstein in 1997. In that publication, the adaptive procedure produces a parametric probability density function whose parameters minimise the variance of the associated likelihood ratio estimator. This variance minimisation can also be viewed as minimising a measure of divergence to the minimum-variance importance sampling density over all members of the parametric family in question. Soon thereafter it was realised that the same adaptive importance sampling procedure could be used to solve combinatorial optimisation problems by viewing the set of solutions to the optimisation problem as a rare-event. This realisation led to the debut of the cross-entropy method in 1999, where it was introduced as a modification to the existing adaptive importance sampling procedure, with a different choice of directed divergence measure, in particular, the Kullback-Leibler cross-entropy. The contributions of this thesis are threefold. Firstly, in a review capacity, it provides an up-to-date consolidation of material on the cross-entropy method and its generalisations, as well as a collation of background material on importance sampling and Monte Carlo methods. The reviews are elucidated with original commentary and examples. Secondly, two new major applications of the cross-entropy methodology to optimisation problems are presented, advancing the boundary of knowledge on cross-entropy in the applied arena. Thirdly, two contributions to the methodological front are (a) an original extension of the generalised cross-entropy framework which enables one to construct state- and time-dependent importance sampling algorithms, and (b) a new algorithm for counting solutions to difficult binary-encoded problems.
|
5 |
Advances in Cross-Entropy MethodsThomas Taimre Unknown Date (has links)
The cross-entropy method is an established technique for solving difficult estimation, simulation, and optimisation problems. The method has its origins in an adaptive importance sampling procedure for rare-event estimation published by R. Y. Rubinstein in 1997. In that publication, the adaptive procedure produces a parametric probability density function whose parameters minimise the variance of the associated likelihood ratio estimator. This variance minimisation can also be viewed as minimising a measure of divergence to the minimum-variance importance sampling density over all members of the parametric family in question. Soon thereafter it was realised that the same adaptive importance sampling procedure could be used to solve combinatorial optimisation problems by viewing the set of solutions to the optimisation problem as a rare-event. This realisation led to the debut of the cross-entropy method in 1999, where it was introduced as a modification to the existing adaptive importance sampling procedure, with a different choice of directed divergence measure, in particular, the Kullback-Leibler cross-entropy. The contributions of this thesis are threefold. Firstly, in a review capacity, it provides an up-to-date consolidation of material on the cross-entropy method and its generalisations, as well as a collation of background material on importance sampling and Monte Carlo methods. The reviews are elucidated with original commentary and examples. Secondly, two new major applications of the cross-entropy methodology to optimisation problems are presented, advancing the boundary of knowledge on cross-entropy in the applied arena. Thirdly, two contributions to the methodological front are (a) an original extension of the generalised cross-entropy framework which enables one to construct state- and time-dependent importance sampling algorithms, and (b) a new algorithm for counting solutions to difficult binary-encoded problems.
|
6 |
Integration of ranking and selection methods with the multi-objective optimisation cross-entropy methodVon Lorne von Saint Ange, Chantel 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: A method for multi-objective optimisation using the cross-entropy
method (MOO CEM) was recently developed by Bekker & Aldrich
(2010) and Bekker (2012). The method aims to identify the nondominated
solutions of multi-objective problems, which are often dynamic
and stochastic. The method does not use a statistical ranking
and selection technique to account for the stochastic nature of the
problems it solves. The research in this thesis aims to investigate
possible techniques that can be incorporated into the MOO CEM.
The cross-entropy method for single-objective optimisation is studied
first. It is applied to an interesting problem in the soil sciences and
water management domain. The purpose of this was for the researcher
to grasp the fundamentals of the cross-entropy method, which will be
needed later in the study.
The second part of the study documents an overview of multi-objective
ranking and selection methods found in literature. The first method
covered is the multi-objective optimal computing budget allocation
algorithm. The second method extends upon the first to include the
concept of an indifference-zone. Both methods aim to maximise the
probability of correctly selecting the non-dominated scenarios, while
intelligently allocating simulation replications to minimise required
sample sizes. These techniques are applied to two problems that
are represented by simulation models, namely the buffer allocation
problem and a classic single-commodity inventory problem. Performance
is measured using the hyperarea indicator and Mann-Whitney
U-tests. It was found that the two techniques have significantly different
performances, although this could be due to the different number
of solutions in the Pareto set.
In the third part of the document, the aforementioned multi-objective
ranking and selection techniques are incorporated into the MOO CEM.
Once again, the buffer allocation problem and the inventory problem
were chosen as test problems. The results were compared to experiments
where the MOO CEM without ranking and selection was used.
Results show that the MOO CEM with ranking and selection has
various affects on different problems. Investigating the possibility of
incorporating ranking and selection differently in the MOO CEM is
recommended as future research. Additionally, the combined algorithm
should be tested on more stochastic problems. / AFRIKAANSE OPSOMMING: 'n Metode vir meerdoelige optimering wat gebruik maak van die kruisentropie-
metode (MOO CEM) is onlangs deur Bekker & Aldrich (2010)
en Bekker (2012) ontwikkel. Die metode mik om die nie-gedomineerde
oplossings van meerdoelige probleme te identifiseer, wat dikwels dinamies
en stogasties is. Die metode maak nie gebruik van 'n statistiese
orden-en-kies tegniek om die stogastiese aard van die problem aan te
spreek nie. Die navorsing in hierdie tesis poog om moontlike tegnieke
wat in die MOO CEM opgeneem kan word, te ondersoek.
Die kruis-entropie-metode vir enkeldoelwit optimering is eerste bestudeer.
Dit is toegepas op 'n interessante probleem in die grondwetenskappe
en waterbestuur domein. Die doel hiervan was om die navorser
die grondbeginsels van die kruis-entropie metode te help verstaan, wat
later in die studie benodig sal word.
Die tweede gedeelte van die studie verskaf 'n oorsig van meerdoelige
orden-en-kies metodes wat in die literatuur aangetref word. Die eerste
metode wat bespreek word, is die optimale toedeling van rekenaarbegroting
vir multi-doelwit optimering algoritme. Die tweede metode
brei uit oor die eerste metode wat die konsep van 'n neutrale sone
insluit. Beide metodes streef daarna om die waarskynlikheid dat die
nie-gedomineerde oplossings korrek gekies word te maksimeer, terwyl
dit ook steekproefgroottes probeer minimeer deur die aantal simulasieherhalings
intelligent toe te ken. Hierdie tegnieke word toegepas
op twee probleme wat verteenwoordig word deur simulasiemodelle,
naamlik die buffer-toedelingsprobleem en 'n klassieke enkelitem voorraadprobleem.
Die prestasie van die algoritmes word deur middel van
die hiperarea-aanwyser en Mann Whitney U-toetse gemeet. Daar is
gevind dat die twee tegnieke aansienlik verskillend presteer, alhoewel dit as gevolg van die verskillende aantal oplossings in die Pareto versameling
kan wees.
In die derde gedeelte van die dokument, is die bogenoemde meerdoelige
orden-en-kies tegnieke in die MOO CEM geïnkorporeer. Weereens
is die buffer-toedelingsprobleem en die voorraadprobleem as toetsprobleme
gekies. Die resultate was met die eksperimente waar die
MOO CEM sonder orden-en-kies gebruik is, vergelyk. Resultate toon
dat vir verskillende probleme, tree die MOO CEM met orden-en-kies
anders op. 'n Ondersoek oor 'n alternatiewe manier om orden-en-kies
met die MOO CEM te integreer is as toekomstige navorsing voorgestel.
Bykomend moet die gekombineerde algoritme op meer stogastiese
probleme getoets word.
|
7 |
The application of the cross-entropy method for multi-objective optimisation to combinatorial problemsHauman, Charlotte 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Society is continually in search of ways to optimise various objectives.
When faced with multiple and con
icting objectives, humans are in
need of solution techniques to enable optimisation. This research
is based on a recent venture in the eld of multi-objective optimisation,
the use of the cross-entropy method to solve multi-objective
problems. The document provides a brief overview of the two elds,
multi-objective optimisation and the cross-entropy method, touching
on literature, basic concepts and applications or techniques. The
application of the method to two problems is then investigated. The
rst application is to the multi-objective vehicle routing problem with
soft time windows, a widely studied problem with many real-world
applications. The problem is modelled mathematically with a transition
probability matrix that is updated according to cross-entropy
principles before converging to an approximation solution set. The
highly constrained problem is successfully modelled and the optimisation
algorithm is applied to a set of benchmark problems. It was
found that the cross-entropy method for multi-objective optimisation
is a valid technique in providing feasible and non-dominated solutions.
The second application is to a real world case study in blood management
done at the Western Province Blood Transfusion Service. The
conceptual model is derived from interviews with relevant stakeholders
before discrete event simulation is used to model the system. The
cross-entropy method is used to optimise the inventory policy of the
system by simultaneously maximising the combined service level of the
system and minimising the total distance travelled. By integrating the
optimisation and simulation model, the study shows that the inventory policy of the service can improve signi cantly, and the use of the
cross-entropy algorithm adequately progresses to a front of solutions.
The research proves the remarkable width and simplicity of possible
applications of the cross-entropy algorithm for multi-objective optimisation,
whilst contributing to literature on the vehicle routing problem
and blood management. Results on benchmark problems for the vehicle
routing problem with soft time windows are provided and an
improved inventory policy is suggested to the Western Province Blood
Transfusion Service. / AFRIKAANSE OPSOMMING: Die mensdom is voortdurend op soek na maniere om verskeie doelwitte
te optimeer. Wanneer die mens konfrontreer word met meervoudige
en botsende doelwitte, is oplossingsmetodes nodig om optimering te
bewerkstellig. Hierdie navorsing is baseer op 'n nuwe wending in die
veld van multi-doelwit optimering, naamlik die gebruik van die kruisentropie
metode om multi-doelwit probleme op te los. Die dokument
verskaf 'n bre e oorsig oor die twee velde { multi-doelwit optimering en
die kruis-entropie-metode { deur kortliks te kyk na die beskikbare literatuur,
basiese beginsels, toepassingsareas en metodes. Die toepassing
van die metode op twee onafhanklike probleme word dan ondersoek.
Die eerste toepassing is di e van die multi-doelwit voertuigroeteringsprobleem
met plooibare tydvensters. Die probleem word eers wiskundig
modelleer met 'n oorgangswaarskynlikheidsmatriks. Die matriks word
dan deur kruis-entropie beginsels opdateer voor dit konvergeer na 'n
benaderingsfront van oplossings. Die oplossingsruimte is onderwerp
aan heelwat beperkings, maar die probleem is suksesvol modelleer en
die optimeringsalgoritme is gevolglik toegepas op 'n stel verwysingsprobleme.
Die navorsing het gevind dat die kruis-entropie metode vir
multi-doelwit optimering 'n geldige metode is om 'n uitvoerbare front
van oplossings te beraam.
Die tweede toepassing is op 'n gevallestudie van die bestuur van bloed
binne die konteks van die Westelike Provinsie Bloedoortappingsdiens.
Na aanleiding van onderhoude met die relevante belanghebbers is 'n
konsepmodel geskep voor 'n simulasiemodel van die stelsel gebou is.
Die kruis-entropie metode is gebruik om die voorraadbeleid van die
stelsel te optimeer deur 'n gesamentlike diensvlak van die stelsel te
maksimeer en terselfdetyd die totale reis-afstand te minimeer. Deur die optimerings- en simulasiemodel te integreer, wys die studie dat
die voorraadbeleid van die diens aansienlik kan verbeter, en dat die
kruis-entropie algoritme in staat is om na 'n front van oplossings te
beweeg. Die navorsing bewys die merkwaardige wydte en eenvoud
van moontlike toepassings van die kruis-entropie algoritme vir multidoelwit
optimering, terwyl dit 'n bydrae lewer tot die afsonderlike
velde van voertuigroetering en die bestuur van bloed. Uitslae vir die
verwysingsprobleme van die voertuigroeteringsprobleem met plooibare
tydvensters word verskaf en 'n verbeterde voorraadbeleid word aan
die Westelike Provinsie Bloedoortappingsdiens voorgestel.
|
8 |
Applying the cross-entropy method in multi-objective optimisation of dynamic stochastic systemsBekker, James 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A difficult subclass of engineering optimisation problems is the class
of optimisation problems which are dynamic and stochastic. These
problems are often of a non-closed form and thus studied by means of
computer simulation. Simulation production runs of these problems
can be time-consuming due to the computational burden implied by
statistical inference principles. In multi-objective optimisation of engineering
problems, large decision spaces and large objective spaces
prevail, since two or more objectives are simultaneously optimised and
many problems are also of a combinatorial nature. The computational
burden associated with solving such problems is even larger than for
most single-objective optimisation problems, and hence an e cient
algorithm that searches the vast decision space is required. Many
such algorithms are currently available, with researchers constantly
improving these or developing more e cient algorithms. In this context,
the term \e cient" means to provide near-optimised results with
minimal evaluations of objective function values. Thus far research has
often focused on solving speci c benchmark problems, or on adapting
algorithms to solve speci c engineering problems.
In this research, a multi-objective optimisation algorithm, based on the
cross-entropy method for single-objective optimisation, is developed
and assessed. The aim with this algorithm is to reduce the number
of objective function evaluations, particularly when time-dependent
(dynamic), stochastic processes, as found in Industrial Engineering,
are studied. A brief overview of scholarly work in the eld of multiobjective
optimisation is presented, followed by a theoretical discussion
of the cross-entropy method. The new algorithm is developed, based
on this information, and assessed considering continuous, deterministic
problems, as well as discrete, stochastic problems. The latter include a
classical single-commodity inventory problem, the well-known buffer allocation problem, and a newly designed, laboratory-sized recon gurable
manufacturing system. Near multi-objective optimisation of two
practical problems were also performed using the proposed algorithm.
In the rst case, some design parameters of a polymer extrusion unit are
estimated using the algorithm. The management of carbon monoxide
gas utilisation at an ilmenite smelter is complex with many decision
variables, and the application of the algorithm in that environment is
presented as a second case.
Quality indicator values are estimated for thirty-four test problem
instances of multi-objective optimisation problems in order to quantify
the quality performance of the algorithm, and it is also compared to a
commercial algorithm.
The algorithm is intended to interface with dynamic, stochastic simulation
models of real-world problems. It is typically implemented in a
programming language while the simulation model is developed in a
dedicated, commercial software package.
The proposed algorithm is simple to implement and proved to be
efficient on test problems. / AFRIKAANSE OPSOMMING: 'n Moeilike deelklas van optimeringsprobleme in die ingenieurswese
is optimeringsprobleme van 'n dinamiese en stogastiese aard. Sulke
probleme is dikwels nie-geslote en word gevolglik met behulp van rekenaarsimulasie
bestudeer. Die beginsels van statistiese steekproefneming
veroorsaak dat produksielopies van hierdie probleme tydrowend is weens
die rekenlas wat genoodsaak word. Groot besluitnemingruimtes en
doelwitruimtes bestaan in meerdoelige optimering van ingenieursprobleme,
waar twee of meer doelwitte gelyktydig geoptimeer word, terwyl
baie probleme ook 'n kombinatoriese aard het. Die rekenlas wat met
die oplos van sulke probleme gepaard gaan, is selfs groter as vir die
meeste enkeldoelwit optimeringsprobleme, en 'n doeltre ende algoritme
wat die meesal uitgebreide besluitnemingsruimte verken, is gevolglik
nodig. Daar bestaan tans verskeie sulke algoritmes, terwyl navorsers
steeds poog om hierdie algoritmes te verbeter of meer doeltre ende
algoritmes te ontwikkel. In hierdie konteks beteken \doeltre end" dat
naby-optimale oplossings verskaf word deur die minimum evaluering
van doelwitfunksiewaardes. Navorsing fokus dikwels op oplossing van
standaard toetsprobleme, of aanpassing van algoritmes om 'n spesi eke
ingenieursprobleem op te los.
In hierdie navorsing word 'n meerdoelige optimeringsalgoritme gebaseer
op die kruis-entropie-metode vir enkeldoelwit optimering ontwikkel
en geassesseer. Die mikpunt met hierdie algoritme is om die aantal
evaluerings van doelwitfunksiewaardes te verminder, spesi ek wanneer
tydafhanklike (dinamiese), stogastiese prosesse soos wat dikwels in die
Bedryfsingenieurswese te egekom word, bestudeer word. 'n Bondige
oorsig van navorsing in die veld van meerdoelige optimering word gegee,
gevolg deur 'n teoretiese bespreking van die kruis-entropiemetode. Die
nuwe algoritme se ontwikkeling is hierop gebaseer, en dit word geassesseer
deur kontinue, deterministiese probleme sowel as diskrete, stogastiese probleme benaderd daarmee op te los. Laasgenoemde sluit
in 'n klassieke enkelitem voorraadprobleem, die bekende buffer-toedelingsprobleem,
en 'n nuut-ontwerpte, laboratorium-skaal herkon gureerbare
vervaardigingstelsel. Meerdoelige optimering van twee praktiese
probleme is met die algoritme uitgevoer. In die eerste geval word sekere
ontwerpparameters van 'n polimeer-uittrekeenheid met behulp van die
algoritme beraam. Die bestuur van koolstofmonoksiedbenutting in 'n
ilmeniet-smelter is kompleks met verskeie besluitnemingveranderlikes,
en die toepassing van die algoritme in daardie omgewing word as 'n
tweede geval aangebied.
Verskeie gehalte-aanwyserwaardes word beraam vir vier-en-dertig toetsgevalle
van meerdoelige optimeringsprobleme om die gehalte-prestasie
van die algoritme te kwanti seer, en dit word ook vergelyk met 'n
kommersi ele algoritme.
Die algoritme is veronderstel om te skakel met dinamiese, stogastiese
simulasiemodelle van regtew^ereldprobleme. Die algoritme sal tipies in
'n programmeertaal ge mplementeer word terwyl die simulasiemodel
in doelmatige, kommersi ele programmatuur ontwikkel sal word. Die
voorgestelde algoritme is maklik om te implementeer en dit het doeltre
end gewerk op toetsprobleme.
|
9 |
Information Theoretical Measures for Achieving Robust Learning MachinesZegers, Pablo, Frieden, B., Alarcón, Carlos, Fuentes, Alexis 12 August 2016 (has links)
Information theoretical measures are used to design, from first principles, an objective function that can drive a learning machine process to a solution that is robust to perturbations in parameters. Full analytic derivations are given and tested with computational examples showing that indeed the procedure is successful. The final solution, implemented by a robust learning machine, expresses a balance between Shannon differential entropy and Fisher information. This is also surprising in being an analytical relation, given the purely numerical operations of the learning machine.
|
10 |
Redução de perdas de sistemas de distribuição através do dimensionamento ótimo de bancos de capacitores via entropia cruzada / Losses reduction of distribution systems through optimal dimensioning of capacitor banks via cross entropyOliveira, Fabrício Bonfim Rodrigues de 21 November 2016 (has links)
Os Sistemas de Distribuição são responsáveis pelo fornecimento da energia elétrica aos consumidores residenciais, industriais e comerciais com padrões de qualidade regulamentados pela Agência Nacional de Energia Elétrica (ANEEL). Assim, as concessionárias monitoram seu sistema para verificar o perfil de tensão na rede elétrica e as perdas técnicas do sistema. Este último critério de desempenho é extremamente relevante, pois representa o desperdício em energia e diminuição na capacidade de receita da empresa. Portanto, há interesse em fornecer a energia elétrica dentro das especificações regidas pela ANEEL e com as menores perdas elétricas possível. Contudo, técnicas como reconfiguração de linhas, recondutoramento, alocação de capacitores e geradores distribuídos são aplicadas. Em especial, a alocação de capacitores é uma técnica que visa identificar a quantidade, localização e tipo dos bancos de capacitores (BCs) que serão alocados no sistema com o intuito de minimizar as perdas, levando em consideração custos de implantação e operação. Para tal, métodos computacionais são utilizados para definir a melhor configuração dos BCs. As metaheurítiscas têm sido aplicadas na solução deste problema, cuja função objetivo é a minimização das perdas técnicas do sistema de distribuição. Desta forma, este trabalho tem o objetivo de propor uma abordagem de solução utilizando a metaheurística Entropia Cruzada implementada no software Python para redução das perdas de sistemas elétricos modelados no OpenDSS. A abordagem se mostrou uma importante ferramenta de análise de sistemas de distribuição, proporcionando resultados extremamente satisfatórios. / The distribution systems are responsible for providing electricity to residential, industrial and commercial consumers under quality standards regulated by the National Electric Energy Agency (ANEEL). Thus, utilities monitor the system to check the voltage profile in the grid and system technical losses. The latter quantity is an extremely important performance criterion, as it represents energy losses and decrease in revenue capacity of the company. Therefore, there is interest in providing electricity within specification stated by ANEEL with the lowest possible electrical losses. Techniques such as topology reconfiguration, reconductoring, allocation of capacitors and distributed generators are usually proposed in technical studies. Particularly, the allocation of capacitors is a technique that aims to identify the amount, location and type of capacitor banks (CBs), which are allocated in the system in order to minimize the losses, taking into consideration the implementation and operation costs. For this purpose, computational methods are used to determine the best configuration of CBs. Metaheuristics have been applied for the solution of this problem, with the objective to minimize the technical losses of distribution systems. This document shows the development of a solution method using the Cross Entropy metaheuristic implemented in Python programming language to reduce the losses of electrical systems modeled in OpenDSS program. The developed approach resulted in an important analysis tool for distribution systems, providing extremely satisfactory results.
|
Page generated in 0.0637 seconds