1 |
Twisted crossed products.January 2003 (has links)
by Chau Man Pan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 74-75). / Abstracts in English and Chinese. / Chapter 1 --- Preliminaries --- p.6 / Chapter 1.1 --- General Theory of C* algebras --- p.6 / Chapter 1.2 --- Hilbert Modules and Induced representations --- p.11 / Chapter 1.3 --- Crossed Products --- p.15 / Chapter 2 --- Twisted crossed products --- p.18 / Chapter 2.1 --- Basic definition --- p.18 / Chapter 2.2 --- Iterated twisted crossed products --- p.24 / Chapter 3 --- Induced representations --- p.27 / Chapter 3.1 --- Construction of Imprimitivity bimodule --- p.27 / Chapter 3.2 --- Basic theory about induced representations --- p.32 / Chapter 4 --- Ideal Theory --- p.38 / Chapter 4.1 --- Induction and Restriction processes --- p.38 / Chapter 4.2 --- Sub-quotients of twisted crossed products --- p.48 / Chapter 5 --- Mackey Machine --- p.53 / Chapter 5.1 --- Quasi regular systems --- p.53 / Chapter 5.2 --- First Step of Mackey Machine --- p.57 / Chapter 5.3 --- Second step of Mackey Machine --- p.59 / Chapter 6 --- Abelian systems --- p.64 / Chapter 6.1 --- Dual spaces of Abelian systems --- p.64 / Chapter 7 --- Appendix --- p.69 / Chapter 7.1 --- Classical version of induced representation --- p.69
|
2 |
Uma sequência exata relacionada a uma extensão de anéis e uma representação parcial / An exact sequence related to an extension of rings and a partial representationRocha, Josefa Itailma da 27 February 2018 (has links)
Para uma extensão de Galois de anéis comutativos, Chase-Harrison-Rosenberg construíram uma sequência exata de sete termos que envolve o grupo de Picard, o grupo de Brauer relativo e grupos de cohomologias. Essa sequência é vista como uma generalização de dois fatos importantes da teoria galoisiana de corpos, a saber, o Teorema $90$ de Hilbert e o isomorfismo de grupo de Brauer relativo com o segundo grupo de cohomologia. A sequência foi generalizada por Miyashita para o contexto de anéis não comutativos com unidade. Mais tarde, El Kaoutit e Gomez-Torrencillas generalizaram o resultado de Miyashita para uma extensão de anéis não comutativos e não unitais, apenas com um conjunto de unidades locais. A sequência de Chase-Harrison-Rosenberg também foi considerada para ações parciais por Dokuchaev, Paques e Pinedo, que construíram uma versão para uma extensão de Galois parcial de anéis comutativos. Nesta tese, elaboramos uma versão da sequência no contexto de ações parciais para uma extensão de anéis não comutativos com unidade. A sequência apresentada aqui generaliza a sequência dada por Miyashita. / For a Galois extension of commutative rings, Chase-Harrison-Rosenberg constructed a seven terms exact sequence which involves the Picard group, the relative Brauer group and cohomology groups. The sequence can be viewed as a generalization of two important facts of Galois theory of fields: the Hilbert 90 Theorem and the isomorphism of the relative Brauer group with the second cohomology group. The sequence was generalized by Miyashita for the context of non-commutative unital rings. Later, El Kaoutit and Gomez-Torrencillas extended the result of Miyashita for an extension of non-unital non-commutative rings with local units. The Chase-Harrison-Rosenberg sequence was also considered for partial actions by Dokuchaev, Paques e Pinedo, who constructed a version for a partial Galois extension of commutative rings. In this thesis, we elaborate a vesrion of the sequence in the context of partial actions for an extension of non-commutative unital rings. Our sequence generalizes the sequence given by Miyashita.
|
3 |
Uma sequência exata relacionada a uma extensão de anéis e uma representação parcial / An exact sequence related to an extension of rings and a partial representationJosefa Itailma da Rocha 27 February 2018 (has links)
Para uma extensão de Galois de anéis comutativos, Chase-Harrison-Rosenberg construíram uma sequência exata de sete termos que envolve o grupo de Picard, o grupo de Brauer relativo e grupos de cohomologias. Essa sequência é vista como uma generalização de dois fatos importantes da teoria galoisiana de corpos, a saber, o Teorema $90$ de Hilbert e o isomorfismo de grupo de Brauer relativo com o segundo grupo de cohomologia. A sequência foi generalizada por Miyashita para o contexto de anéis não comutativos com unidade. Mais tarde, El Kaoutit e Gomez-Torrencillas generalizaram o resultado de Miyashita para uma extensão de anéis não comutativos e não unitais, apenas com um conjunto de unidades locais. A sequência de Chase-Harrison-Rosenberg também foi considerada para ações parciais por Dokuchaev, Paques e Pinedo, que construíram uma versão para uma extensão de Galois parcial de anéis comutativos. Nesta tese, elaboramos uma versão da sequência no contexto de ações parciais para uma extensão de anéis não comutativos com unidade. A sequência apresentada aqui generaliza a sequência dada por Miyashita. / For a Galois extension of commutative rings, Chase-Harrison-Rosenberg constructed a seven terms exact sequence which involves the Picard group, the relative Brauer group and cohomology groups. The sequence can be viewed as a generalization of two important facts of Galois theory of fields: the Hilbert 90 Theorem and the isomorphism of the relative Brauer group with the second cohomology group. The sequence was generalized by Miyashita for the context of non-commutative unital rings. Later, El Kaoutit and Gomez-Torrencillas extended the result of Miyashita for an extension of non-unital non-commutative rings with local units. The Chase-Harrison-Rosenberg sequence was also considered for partial actions by Dokuchaev, Paques e Pinedo, who constructed a version for a partial Galois extension of commutative rings. In this thesis, we elaborate a vesrion of the sequence in the context of partial actions for an extension of non-commutative unital rings. Our sequence generalizes the sequence given by Miyashita.
|
4 |
Traces, one-parameter flows and K-theoryFrancis, Michael 02 September 2014 (has links)
Given a C*-algebra $A$ endowed with an action $\alpha$ of $\R$ and an $\alpha$-invariant trace $\tau$, there is a canonical dual trace $\widehat \tau$ on the crossed product $A \rtimes_\alpha \R$. This dual trace induces (as would any suitable trace) a real-valued homomorphism $\widehat \tau_* : K_0(A \rtimes_\alpha \R) \to \R$ on the even $K$-theory group. Recall there is a natural isomorphism $\phi_\alpha^i : K_i(A) \to K_{i+1}(A \rtimes_\alpha \R)$, the Connes-Thom isomorphism. The attraction of describing $\widehat \tau_* \circ \phi_\alpha^1$ directly in terms of the generators of $K_1(A)$ is clear. Indeed, the paper where the isomorphisms $\{\phi_\alpha^0,\phi_\alpha^1\}$ first appear sees Connes show that $\widehat \tau_* \phi_\alpha^1[u] = \frac{1}{2 \pi i} \tau(\delta(u) u^*)$, where $\delta = \frac{d}{dt} \big|_{t=0} \alpha_t(\cdot)$ and $u$ is any appropriate unitary. A careful proof of the aforementioned result occupies a central place in this thesis. To place the result in its proper context, the right-hand side is first considered in its own right, i.e., in isolation from mention of the crossed-product. A study of 1-parameter dynamical systems and exterior equivalence is undertaken, with several useful technical results being proven. A connection is drawn between a lemma of Connes on exterior equivalence and projections, and a quantum-mechanical theorem of Bargmann-Wigner. An introduction to the Connes-Thom isomorphism is supplied and, in the course of this introduction, a refined version of suspension isomorphism $K_1(A) \to K_0(\susp A)$ is formulated and proven. Finally, we embark on a survey of unbounded traces on C*-algebras; when traces are allowed to be unbounded, there is inevitably a certain amount of hard, technical work needed to resolve various domain issues and justify various manipulations. / Graduate / 0280
|
5 |
Semigroup C* crossed products and Toeplitz algebrasAhmed, Mamoon Ali January 2007 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / (**Note: this abstract is a plain text version of the author's abstract, the original of which contains characters and symbols which cannot be accurately represented in this format. The properly formatted abstract can be viewed in the Abstract and Thesis files above.**) Let (G,G+) be a quasi-lattice-ordered group with positive cone G+ Laca and Raeburn have shown that the universal C*-algebra C*(G,G+)introduced by Nica is a crossed product BG+ Xɑ G+ by a semigroup of endomorphisms. Subsequent research centered on totally ordered abelian groups. We generalize the results in [2], [3] and [5] to extend it to the case of discrete lattice-ordered abelian groups. In particular given a hereditary subsemigroup H+ of G+ we introduce a closed ideal IH+ of the C*-algebra BG+. We construct an approximate identity for this ideal and show that IH+ is extendibly a-invariant. It follows that there is an isomorphism between C*-crossed products (BG+/IH+) XɑG+ and B(G/H)+ XβG+. This leads to one of our main results that B(G/H)+ XβG+ is realized as an induced C*-algebra IndG-H (B(G/H+ Xt(G/H)+). Then we use this result to show the existence of the following short exact sequence of C*-algebras 0-IH+ XɑG+ → BG+ XɑG+ → IndG-H (B(G/H+ Xt(G/H)+) → 0. This leads to show that the ideal IH+ XɑG+ is generated by {iBG+(1-1u):u∊H+} and therefore contained in the commutator ideal CG of the C*-algebra BG+ XɑG+. Moreover, we use our short exact sequence to study the primitive ideals of the C* algebra BG+ XɑG+ which is isomorphic to the Toeplitz albebra T(G) of G.
|
6 |
Semigroup C* crossed products and Toeplitz algebrasAhmed, Mamoon Ali January 2007 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / (**Note: this abstract is a plain text version of the author's abstract, the original of which contains characters and symbols which cannot be accurately represented in this format. The properly formatted abstract can be viewed in the Abstract and Thesis files above.**) Let (G,G+) be a quasi-lattice-ordered group with positive cone G+ Laca and Raeburn have shown that the universal C*-algebra C*(G,G+)introduced by Nica is a crossed product BG+ Xɑ G+ by a semigroup of endomorphisms. Subsequent research centered on totally ordered abelian groups. We generalize the results in [2], [3] and [5] to extend it to the case of discrete lattice-ordered abelian groups. In particular given a hereditary subsemigroup H+ of G+ we introduce a closed ideal IH+ of the C*-algebra BG+. We construct an approximate identity for this ideal and show that IH+ is extendibly a-invariant. It follows that there is an isomorphism between C*-crossed products (BG+/IH+) XɑG+ and B(G/H)+ XβG+. This leads to one of our main results that B(G/H)+ XβG+ is realized as an induced C*-algebra IndG-H (B(G/H+ Xt(G/H)+). Then we use this result to show the existence of the following short exact sequence of C*-algebras 0-IH+ XɑG+ → BG+ XɑG+ → IndG-H (B(G/H+ Xt(G/H)+) → 0. This leads to show that the ideal IH+ XɑG+ is generated by {iBG+(1-1u):u∊H+} and therefore contained in the commutator ideal CG of the C*-algebra BG+ XɑG+. Moreover, we use our short exact sequence to study the primitive ideals of the C* algebra BG+ XɑG+ which is isomorphic to the Toeplitz albebra T(G) of G.
|
7 |
C*-Correspondences and Topological Dynamical Systems Associated to Generalizations of Directed GraphsJanuary 2011 (has links)
abstract: In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen. / Dissertation/Thesis / Ph.D. Mathematics 2011
|
8 |
Soficity and Other Dynamical Aspects of Groupoids and Inverse SemigroupsCordeiro, Luiz Gustavo 23 August 2018 (has links)
This thesis is divided into four chapters. In the first one, all the pre-requisite theory of semigroups and groupoids is introduced, as well as a few new results - such as a short study of ∨-ideals and quotients in distributive semigroups and a non-commutative Loomis-Sikorski Theorem. In the second chapter, we motivate and describe the sofic property for probability measure-preserving groupoids and prove several permanence properties for the class of sofic groupoids. This provides a common ground for similar results in the particular cases of groups and equivalence relations. In particular, we prove that soficity is preserved under finite index extensions of groupoids. We also prove that soficity can be determined in terms of the full group alone, answering a question by Conley, Kechris and Tucker-Drob. In the third chapter we turn to the classical problem of reconstructing a topological space from a suitable structure on the space of continuous functions. We prove that a locally compact Hausdorff space can be recovered from classes of functions with values on a Hausdorff space together with an appropriate notion of disjointness, as long as some natural regularity hypotheses are satisfied. This allows us to recover (and even generalize) classical theorem by Kaplansky, Milgram, Banach-Stone, among others, as well as recent results of the similar nature, and obtain new consequences as well. Furthermore, we extend the techniques used here to obtain structural theorems related to topological groupoids. In the fourth and final chapter, we study dynamical aspects of partial actions of inverse semigroups, and in particular how to construct groupoids of germs and (partial) crossed products and how do they relate to each other. This chapter is based on joint work with Viviane Beuter.
|
9 |
Die lokale Struktur von T-Dualitätstripeln / The Local Structure of T-Duality TriplesSchneider, Ansgar 05 November 2007 (has links)
No description available.
|
Page generated in 0.0864 seconds