Spelling suggestions: "subject:"crystal array diffraction"" "subject:"crystal foray diffraction""
11 |
The Synthesis and Characterization of Imidazolium Lithium PhthalocyaninesKelley, John J. 26 September 2008 (has links)
No description available.
|
12 |
The Coordination Chemistry of Xenon Trioxide with Oxygen BasesMarczenko, Katherine January 2018 (has links)
This thesis extends our fundamental knowledge in the area of high oxidation state chemistry of xenon trioxide, XeO3. Oxygen coordination to the Xe(VI) atom of XeO3 was observed in its adducts with triphenylphosphine oxide, [(C6H5)3PO]2XeO3, dimethylsulfoxide, [(CH3)2SO]3(XeO3)2, pyridine-N-oxide, (C5H5NO)3(XeO3)2, and acetone, [(CH3)2CO]3XeO3. The crystalline adducts were characterized by low-temperature single-crystal X-ray diffraction and Raman spectroscopy. Unlike solid XeO3, which detonates when mechanically or thermally shocked, the solid [(C6H5)3PO]2XeO3, [(CH3)2SO]3(XeO3)2, and (C5H5NO)3(XeO3)2 adducts are insensitive to mechanical shock, but undergo deflagration when exposed to a flame. Both [(C6H5)3PO]2XeO3 and (C5H5NO)3(XeO3)2 are air-stable at room temperature. The xenon coordination sphere in [(C6H5)3PO]2XeO3 is a distorted square pyramid and provides the first example of a five-coordinate Xe center in a XeO3 adduct. The xenon coordination sphere of the remaining adducts are distorted octahedral comprised of three equivalent Xe---O secondary contacts that are approximately trans to the primary Xe–O bonds of XeO3. Hirshfeld surfaces of XeO3 and (C6H5)3PO in [(C6H5)3PO]2XeO3 show the adduct is well-isolated in its crystal structure and provide a visual representation of the secondary Xe---O bonding in this adduct.
Crown ethers have been known for over 50 years, but no example of a complex between a noble-gas compound and a crown ether or another polydentate ligand had been reported. Xenon trioxide is shown to react with 15-crown-5 to form the kinetically stable (CH2CH2O)5XeO3 adduct which, in marked contrast with solid XeO3, does not detonate when mechanically shocked. The crystal structure shows that the five oxygen atoms of the crown ether are coordinated to the xenon atom of XeO3. The gas-phase Wiberg bond valences and indices and empirical bond valences indicate the Xe---Ocrown bonds are predominantly electrostatic, σ-hole, bonds. Mappings of the electrostatic potential (EP) onto the Hirshfeld surfaces of XeO3 and 15-crown-5 in (CH2CH2O)5XeO3 and a detailed examination of the molecular electrostatic potential surface (MEPS) of XeO3 and (CH2CH2O)5 reveal regions of negative EP on the oxygen atoms of (CH2CH2O)5 and regions of high positive EP on the xenon atom that are also consistent with σ-hole bonding.
Reactions of crown ethers with HF acidified aqueous solutions of XeO3 at room-temperature yielded adducts of 12-crown-4, (CH2CH2O)4XeO3, and 18-crown-6, [(CH2CH2O)6XeO3∙2H2O]2∙HF, whereas slow cooling of a solution of XeO3 with 18-crown-6 in acetone yielded (CH2CH2O)6XeO3∙2H2O. The adducts (CH2CH2O)4XeO3 and (CH2CH2O)6XeO3∙2H2O are shock-insensitive whereas the former adduct is air-stable at room temperature. The low-temperature, single-crystal X-ray structures show the Xe atom of XeO3 coordinated to the oxygen atoms of the crown ether ring. Uncharacteristic xenon coordination numbers exceeding six (including the three primary bonds of XeO3) were observed for all crown ether adducts. Raman spectroscopy frequency shifts are consistent with complex formation and provided evidence for the 2,2,1-cryptand adduct of XeO3. Gas-phase Wiberg bond valences and indices and empirical solid-state bond valences confirmed the electrostatic nature of the Xe---O bonding interactions. Comparisons between the XeO3 and SbF3 18-crown-6, 15-crown-5, and 12-crown-4 complexes are made.
Incorporation of xenon trioxide, XeO3, into inorganic polyatomic salts under ambient conditions has been observed in several mixed xenate salts; K[XeO3XO3] (X = Cl, Br), K2[XeO3SeO4]∙HF, K[(XeO3)nZO3] (Z = I, N), and M2[(XeO3)nCO3]∙xH2O (M = Na, K, Rb, Ba). Raman spectroscopy was used to identify the aforementioned compounds and K[XeO3ClO3], K[XeO3BrO3], K2[XeO3SeO4]∙HF, and Rb2[(XeO3)2CO3]∙2H2O were also characterized by low-temperature, single-crystal X-ray diffraction. The xenon atom of XeO3 is seven coordinate in K[XeO3ClO3] and six coordinate in all other compounds with Xe---O distances that are significantly less than the sum of the Xe and O van der Waals radii. These salts provide examples of XeO3 coordinated to inorganic compounds and may provide insights into the inclusion of xenon oxides in minerals. / Thesis / Master of Science (MSc)
|
13 |
Structural characterisation of novel poly-aryl compoundsKhashoqji, Moayad January 2016 (has links)
Poly-aryl, also known as polyphenylene compounds are a class of dendrimer, which contain a large number of aromatic rings. They are of interest because they display restricted rotation of their stearically congested aromatic rings. These extended structures have the potential to act as precursors for even larger aromatic systems and have many applications including electronic devices, drug delivery and catalysis. A total of 23 novel poly-aryl compounds have been examined using single crystal X-ray diffraction and a number of structural patterns have emerged. Six of the compounds contain alkynes and it has been observed that their conformation is governed by a combination of conjugation between the alkyne and aryl groups and inter-molecular interactions. In the more extended poly-aryl compounds steric congestion rules out any possibility of conjugation between the rings and their conformation is governed by intra-molecular non-bonded interactions in the core of the molecules and by inter-molecular interactions in their periphery. Where possible, solution NMR measurements were carried out on the poly-aryl compounds and confirmed that the solution structures are in agreement with those obtained from individual crystal.
|
14 |
Supramolecular studies with functionalised group 15 ligandsSanchez-Ballester, Noelia M. January 2010 (has links)
This thesis has been divided into five sections. The first chapter introduces the main themes of this thesis, including the description of the concepts of supramolecular chemistry, crystal engineering, hydrogen bonding and graph set analysis. The final section of chapter one describes a typical X-ray experiment used to determine the structures of the compounds presented in this thesis. Chapter two describes the synthesis and single crystal structures of copper(I) complexes with pyridine- and pyrazine-carboxylic acids. A series of novel solvent inclusion compounds of copper(I) complexes with pyridine- and pyrazine-carboxylic acids and the hydrogen bonding patterns adopted are also discussed. Chapter three reports the potential uses of boronic acids as building blocks for the design of novel solid-state architectures utilising hydrogen bonds. Novel copper(I) pyridine-/pyrazine-carboxylate complexes with boronic acid co-crystals are presented in which the heterodimeric boronic carboxylate R22(8) ring motif is present in all cases. Chapter four discusses the synthesis of novel ditertiary phosphines bearing functional groups with hydrogen bonding potential either via a three-step or single step synthetic route which involves a well known method of reductive amination followed by an efficient Mannich-based condensation. Complexation studies of these P,P-bidentate ligands with various transition metal centres such as Pt(II), Mo(0), Ru(II) and Au(I) are also presented. The effect on the structural motifs observed in these series of compounds by the regioselective incorporation of functional groups with potential hydrogen bonding capability such as hydroxyl and amide is also given. Finally, chapter five contains the synthesis and coordination studies of new phosphorus donor ligands leading to ideas for further work.
|
15 |
Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaicsEckhardt, Kai, Bon, Volodymyr, Getzschmann, Jürgen, Grothe, Julia, Wisser, Florian M., Kaskel, Stefan 17 March 2017 (has links) (PDF)
The crystal structure of a new bismuth-based light-absorbing material for the application in solar cells was determined by single crystal X-ray diffraction for the first time. (CH3NH3)3(Bi2I9) (MBI) is a promising alternative to recently rapidly progressing hybrid organic–inorganic perovskites due to the higher tolerance against water and low toxicity. Single crystal X-ray diffraction provides detailed structural information as an essential prerequisite to gain a fundamental understanding of structure property relationships, while powder diffraction studies demonstrate a high degree of crystallinity in thin films.
|
16 |
Assessment of Single Crystal X-ray Diffraction Data QualityKrause, Lennard 02 March 2017 (has links)
No description available.
|
17 |
Estudos cristalográficos e da densidade de carga de novas formas sólidas derivadas de compostos antirretrovirais / Crystallography and charge density studies of new solid forms of antiretroviral drugsClavijo, Juan Carlos Tenorio 09 October 2018 (has links)
Este documento de Tese é o resultado de um trabalho de pesquisa voltado à análise cristalográfica de novas formas sólidas cristalinas derivadas de fármacos antirretrovirais, diante do contexto da engenharia de cristais para o desenho das novas formas sólidas, e principalmente diante da ótica da análise das densidades de carga, o que permitiu um entendimento mais acurado da estrutura eletrônica molecular desta classe de compostos. Compostos farmacêuticos antirretrovirais do tipo inibidores nucleosídeos da transcriptase reversa (INTRs), são de grande importância, uma vez que são amplamente usados na terapêutica antirretroviral, principalmente contra o vírus HIV. Nesse contexto, são conhecidos alguns problemas associados na manufatura destes fármacos, principalmente aos processos de extração e purificação dos fármacos Lamivudina (3TC) e Emtricitabina (FTC). Diante desta problemática, a engenharia de cristais fornece uma solução, mediante o planejamento racional de formas sólidas (sais, cocristais, solvatos, polimorfos, etc.) que apresentam maior estabilidade e facilitem principalmente o processo de purificação em grande escala. Daí surge a importância de estudar a estrutura molecular das diferentes formas sólidas derivadas destes fármacos, sendo uma das principais técnicas para este estudo a difração de raios X em monocristais (DRXM). Neste trabalho um total de nove novas formas sólidas foram avaliadas e reportadas, com uma discussão detalhada das conformações moleculares e supramoleculares. Entretanto, é realizada uma análise das densidades de carga mediante métodos experimentais, uma vez que foram conduzidos experimentos de DRXM em alta resolução, em virtude da boa qualidade dos cristais que algumas das formas sólidas apresentaram. Desta maneira foi possível propor modelos de densidade de carga experimentais construídos mediante o formalismo de Hansen & Coppens, utilizando refinamento por mínimos quadrados baseados nos dados de difração em alta resolução. Por último, com o intuito de ter um estudo mais completo e detalhado da estrutura eletrônica, foram realizados cálculos teóricos de primeiros princípios em condições gasosas e periódicas de contorno. Desta forma, é apresentada uma sinergia entre os resultados obtidos pelas análises das distribuições de densidade de cargas de algumas formas sólidas, com os resultados gerais da engenharia de cristais e, portanto, concluir e extrapolar alguns aspectos importantes, principalmente no que se refere às energias associadas com as interações intermoleculares. A sinergia dos estudos de engenharia de cristais e de densidade de carga, é um tipo de pesquisa pouco publicada dentro da área da cristalografia de pequenas moléculas. / This Thesis is the result of the research proposal aimed to the crystallographic analysis of new crystalline solid forms derived from antiretroviral drugs, in the context of the crystal engineering for the design of the new solid forms, mainly since the viewpoint of the charge density analysis, which allowed an accurate comprehension of the molecular electronic structure of this kind of compounds. Antiretroviral drug compounds of nucleoside analog reverse-transcriptase inhibitors (NRTI) type, are of great importance once they are large used in the antiretroviral therapy, mainly against the HIV. In this context, some problems are known regard to the manufacture process of these drugs, mainly in the extraction and purification procedures of the lamivudine (3TC) and emtricitabine (FTC) drugs. On this issue, the crystal engineering provides an answer, through the rational planning of solid forms (salts, cocrystals, solvates, polymorphs, etc.) that exhibit an increased stability and facilitate mainly the large-scale purification process. Hence is important to study the molecular structure of the diverse solid forms derived from these drugs, mainly through the single-crystal X-ray diffraction (SCXD) experiments. In this research a total of nine new solid forms were assessed and reported, along with a detailed discussion of the molecular and supramolecular conformations. Meantime, it was carried out an analysis of the experimental charge density, once it was performed high-resolution SCXD experiments, since some of the solid forms showed good quality single crystals. In this way, it was possible to propose models of experimental charge density through the Hansen & Coppens formalism, using least-square refinement against high-resolution X-ray diffraction data. Finally, with the aim to have a more complete and detailed study of the electronic structure, it was also carried out first principles theoretical calculations in gas-phase and periodic boundary conditions. Thus, it is shown a synergy between the results obtained by the analysis of the charge density distributions of some solid forms and the crystal engineering results and, therefore, to conclude and to extrapolate some important aspects, mainly involved with the intermolecular interaction energies. The synergy of the crystal engineering and charge density studies is a kind of research little published, within the small molecule crystallography area.
|
18 |
The Challenge of Probing Lithium Insertion Mechanisms in Cathode MaterialsHöwing, Jonas January 2004 (has links)
<p>The Li-ion battery has, from its commercialisation in the early 1990's, now become the most widely used power source for portable low-power electronics: laptops, cellular phones and MP3-players are a few examples. To further develop existing and find new electrode materials for these batteries, it is vital to understand the lithium insertion/extraction mechanisms taking place during battery operation. In this thesis, single-crystal X-ray diffraction has been used to investigate lithium insertion/extraction mechanisms in the cathode materials V<sub>6</sub>O<sub>13</sub> and LiFePO<sub>4</sub>. A novel single-crystal electrochemical cell for <i>in situ</i> single-crystal X-ray diffraction studies has also been developed.</p><p>The phases Li<sub>3</sub>V<sub>6</sub>O<sub>13</sub> and Li<sub>3+x</sub>V<sub>6</sub>O<sub>13</sub>, 0<x<1, both contain a disordered lithium ion. A low-temperature study of Li<sub>3.24</sub>V<sub>6</sub>O<sub>13</sub> (at 95 K) shows that this disorder is static rather than dynamic; the lithium ion is equally distributed above and below an inversion centre in the centrosymmetric V<sub>6</sub>O<sub>13</sub> host structure. Short-range-ordering between this disordered lithium ion and the lithium ion inserted into Li<sub>3</sub>V<sub>6</sub>O<sub>13</sub> gives rise to solid-solution behaviour not observed earlier in the Li<sub>x</sub>V<sub>6</sub>O<sub>13</sub> system. A model is proposed for the lithium insertion mechanism up to the end-member composition Li<sub>6</sub>V<sub>6</sub>O<sub>13</sub>.</p><p>Lithium has also been electrochemically extracted from LiFePO<sub>4</sub> single crystals. On the basis of the shapes of the LiFePO<sub>4</sub> and FePO<sub>4</sub> reflections, it is concluded that FePO<sub>4</sub> is formed at the crystal surface and that the LiFePO<sub>4</sub>/FePO<sub>4</sub> interface propagates into the crystal. This is in agreement with an earlier proposed model for lithium extraction from LiFePO<sub>4</sub> particles.</p><p>Initial experiments with the newly developed single-crystal electrochemical cell for <i>in situ</i> single-crystal X-ray diffraction demonstrate that it is possible to insert lithium into a single crystal of V<sub>6</sub>O<sub>13</sub> and then collect single-crystal X-ray diffraction data. The method needs further development but promises to become a powerful tool for studying lithium insertion/extraction mechanisms.</p>
|
19 |
The Challenge of Probing Lithium Insertion Mechanisms in Cathode MaterialsHöwing, Jonas January 2004 (has links)
The Li-ion battery has, from its commercialisation in the early 1990's, now become the most widely used power source for portable low-power electronics: laptops, cellular phones and MP3-players are a few examples. To further develop existing and find new electrode materials for these batteries, it is vital to understand the lithium insertion/extraction mechanisms taking place during battery operation. In this thesis, single-crystal X-ray diffraction has been used to investigate lithium insertion/extraction mechanisms in the cathode materials V6O13 and LiFePO4. A novel single-crystal electrochemical cell for in situ single-crystal X-ray diffraction studies has also been developed. The phases Li3V6O13 and Li3+xV6O13, 0<x<1, both contain a disordered lithium ion. A low-temperature study of Li3.24V6O13 (at 95 K) shows that this disorder is static rather than dynamic; the lithium ion is equally distributed above and below an inversion centre in the centrosymmetric V6O13 host structure. Short-range-ordering between this disordered lithium ion and the lithium ion inserted into Li3V6O13 gives rise to solid-solution behaviour not observed earlier in the LixV6O13 system. A model is proposed for the lithium insertion mechanism up to the end-member composition Li6V6O13. Lithium has also been electrochemically extracted from LiFePO4 single crystals. On the basis of the shapes of the LiFePO4 and FePO4 reflections, it is concluded that FePO4 is formed at the crystal surface and that the LiFePO4/FePO4 interface propagates into the crystal. This is in agreement with an earlier proposed model for lithium extraction from LiFePO4 particles. Initial experiments with the newly developed single-crystal electrochemical cell for in situ single-crystal X-ray diffraction demonstrate that it is possible to insert lithium into a single crystal of V6O13 and then collect single-crystal X-ray diffraction data. The method needs further development but promises to become a powerful tool for studying lithium insertion/extraction mechanisms.
|
20 |
Star Polymers and Dendrimers Based on Highly Functional Resorcin- and PyrogallolarenesKrause, Tilo 28 June 2007 (has links) (PDF)
In the frame of this thesis different calix[4]resorcin- and calix[4]pyrogallolarene derivatives were used as platform for the synthesis of novel star polymers and dendritic structures. The objectives of this work can be portrayed under the following points: First: Synthesis and modification of calix[4]resorcin- and calix[4]pyrogallolarenes with a varying number and varying type of functional sites and their precise characterization by modern NMR techniques and single crystal X-ray diffraction. Second: Synthesis of well-defined star polymers and dendrimers with different number of arms and accordingly dendrons, based on calix[4]resorcin- and calix[4]pyrogallolarenes, via convenient polymerization and generation growth reactions and analysis of the obtained products by different methods (MALDI-TOF-MS, SEC-RI and SEC-MALLS, NMR).
|
Page generated in 0.1212 seconds