• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New nanomaterials: amyloid fibrils from waste proteins

Domigan, Laura Joy January 2012 (has links)
The current landscape of nanotechnology has focussed attention on materials that self-assemble. The search for such materials has unsurprisingly led to the biological world, where functional nanoscale biomolecular assemblies are in abundance. Amyloid fibrils are one such self-assembling biological structure, formed when native proteins misfold into insoluble fibrous quaternary structures. This research has explored the use of amyloid fibrils formed from waste proteins, namely crude crystallin proteins from fish eye lenses, as biological nanowires. The use of amyloid fibrils as nanowires was investigated by examining the ability to control their dimensions and arrangement, along with analysis of their properties, such as stability and conductivity. TEM and AFM studies on the model amyloid forming protein, bovine insulin, showed that a number of fibril length distributions can be achieved, by systematically altering fibril growth and storage conditions. Although the same set of conditions cannot be directly applied to crystallin fibrils, these fibrils can also be produced on a range of length scales. Amyloid fibrils can be manipulated and aligned in a controlled manner by dielectrophoresis; this tool could later be used to incorporate amyloid fibrils into a biosensing or bioelectronics device. Dielectrophoresis was also used to immobilise crystallin fibrils between electrode pairs, in order to investigate the conductivity of small numbers of fibrils. These experiments complemented work carried out on the conductivity of amyloid fibril networks, using fabricated interdigitated electrodes. In the unmodified state, amyloid fibrils formed from bovine insulin, fungal hydrophobins, and crude crystallins were all shown to have low conductivity, with current values in the range of 10⁻⁸–10⁻¹⁰ A recorded at bias voltages of 0–2 V. Amyloid fibrils were used as a template for the synthesis of conductive nanowires, by modification with the conducting polymers polyaniline and polypyrrole, increasing conductivity by one and four orders of magnitude respectively. The functionalisation of fibrils with glucose oxidase enabled the creation of a very simple glucose sensing device. This device, consisting of a gold electrode modified with the glucose oxidase functionalised fibrils, showed an electrochemical response in the presence of glucose and the mediator FcOH. Future work is necessary to optimise the use of amyloid fibrils in this way; however, this study confirms a role for amyloid fibrils from a low cost source in bionanotechnology.
2

Structure and function of the lens main intrinsic protein (MIP-26)

Peyer, Oliver Sebastian de January 1999 (has links)
No description available.
3

Structure, assembly and evolution of the #beta##gamma#-crystallin fold

Clout, Naomi Johanne January 2000 (has links)
No description available.
4

Structural and functional properties of human [alpha]A-crystallin

Chaves, Jose Mauro. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 6, 2008). Includes bibliographical references.
5

Molecular Evolution of Visual System Genes in Fishes

Weadick, Cameron James 26 March 2012 (has links)
For many species, vision contributes to a number of fitness-related tasks, including mating and the detection of prey and predators. Selection on the visual system should therefore be strong, especially when ecological or genomic changes open new avenues for evolutionary changes. Visual system proteins are thus attractive systems for molecular evolutionary analyses. This thesis presents a collection of evolutionary studies on two gene families, opsins and crystallins. Opsin proteins determine the wavelengths of light detected by the retina, while crystallin proteins contribute to lens transparency and refractory power. My studies focus on teleost fishes, because teleost visual ecology is exceptionally diverse and because gene duplication is common in this group. In Chapter One, I outline the relevance of protein variation to organismal evolution and describe the analytical methods employed throughout this thesis. Chapter Two considers the long-wavelength sensitive (LWS) opsins of the guppy (Poecilia reticulata). The guppy is shown to possess multiple LWS opsins that have accumulated differences at functionally important amino acid sites since duplicating. Chapter Three focuses on the guppy’s main predator, the pike cichlid Crenicichla frenata, which is shown to have a greater capacity for short-wavelength vision than previously believed. However, this cichlid possesses three fewer opsins than closely-related African cichlids, a difference partly due to duplication of a green-sensitive (RH2) opsin in African cichlids. In Chapter Four, this RH2 duplication event is studied in greater depth; variation in selective constraint is documented following gene duplication and between species from different lakes. Some of the analytical methods employed in Chapter Four were newly developed, as detailed in Chapter Five, where a test for functional divergence among clades is evaluated and then improved upon through the presentation of a new null model that better accommodates among-site variation in selection. In Chapter Six, phylogenetic relationships within the βγ lens crystallin superfamily are clarified, and the functionally distinct γN family is shown to have evolved conservatively compared to other crystallin families. The thesis concludes with suggestions for future directions for evolutionary research on opsins and crystallins, and summarizes recent work that has built on these studies.
6

Molecular Evolution of Visual System Genes in Fishes

Weadick, Cameron James 26 March 2012 (has links)
For many species, vision contributes to a number of fitness-related tasks, including mating and the detection of prey and predators. Selection on the visual system should therefore be strong, especially when ecological or genomic changes open new avenues for evolutionary changes. Visual system proteins are thus attractive systems for molecular evolutionary analyses. This thesis presents a collection of evolutionary studies on two gene families, opsins and crystallins. Opsin proteins determine the wavelengths of light detected by the retina, while crystallin proteins contribute to lens transparency and refractory power. My studies focus on teleost fishes, because teleost visual ecology is exceptionally diverse and because gene duplication is common in this group. In Chapter One, I outline the relevance of protein variation to organismal evolution and describe the analytical methods employed throughout this thesis. Chapter Two considers the long-wavelength sensitive (LWS) opsins of the guppy (Poecilia reticulata). The guppy is shown to possess multiple LWS opsins that have accumulated differences at functionally important amino acid sites since duplicating. Chapter Three focuses on the guppy’s main predator, the pike cichlid Crenicichla frenata, which is shown to have a greater capacity for short-wavelength vision than previously believed. However, this cichlid possesses three fewer opsins than closely-related African cichlids, a difference partly due to duplication of a green-sensitive (RH2) opsin in African cichlids. In Chapter Four, this RH2 duplication event is studied in greater depth; variation in selective constraint is documented following gene duplication and between species from different lakes. Some of the analytical methods employed in Chapter Four were newly developed, as detailed in Chapter Five, where a test for functional divergence among clades is evaluated and then improved upon through the presentation of a new null model that better accommodates among-site variation in selection. In Chapter Six, phylogenetic relationships within the βγ lens crystallin superfamily are clarified, and the functionally distinct γN family is shown to have evolved conservatively compared to other crystallin families. The thesis concludes with suggestions for future directions for evolutionary research on opsins and crystallins, and summarizes recent work that has built on these studies.
7

Antioxidant Intervention With manganese(Iii)-Salophen in the Selenite Cataract Model: Implications for Cataract Disease

Dell, Kevin David 26 May 1998 (has links)
Cataract disease affects millions of people worldwide. It is characterized by the accumulation of light-scattering bodies within the lens that reduce visual acuity. Cataracts are effectively treated surgically, but at great expense, costing Medicare $3.4 billion in 1997. Development of an alternative therapy for this disease would provide medical and economic benefits. We have investigated a novel antioxidant, the superoxide scavenger Mn(III)-salophen, as a therapeutic agent in the selenite cataract model. Mn(III)-salophen has been shown to protect E. coli colonies against oxidative stress but was untested in a eukaryotic system. A total dose of 300 mmol/kg, given IP in four equal 75 mmol/kg doses spaced four hours apart, protects 75% of neonatal rats from nuclear cataract development five days after selenite injection. Selenite is toxic through its reaction with the endogenous antioxidant glutathione (GSH). The reduction of selenite to selenide through an intermediate, selenodiglutathione (GSSeSG) leads to generation of superoxide radical, one of several toxic oxygen species that can damage the lens. Mn(III)-salophen causes an in vitro preservation of the lifetime of GSSeSG by interrupting the reduction of selenite. We have established that the reduction of GSSeSG to selenide does not use GSH as a reducing agent, but rather depends upon electrons generated in the earlier reduction of selenite to selenodiglutathione. These electrons can be intercepted by known one-electron scavengers, arresting the metabolism of GSSeSG. Extensive proteolysis of lens crystallins and loss of calcium homeostasis occur in cataractous lenses from a rat treated with sodium selenite. The visual protection with Mn(III)-salophen is accompanied by a partial loss of the calcium homeostasis, a net increase in sodium, and calpain-mediated proteolysis of à -crystallins similar to lenses from animals treated with selenite alone. Although preservation of alpha-crystallins may contribute to the greater transparency in the protected lens, generalized à -crystallin proteolysis is insufficient for cataract formation. From these experiments we propose that Mn(III)-salophen minimizes the oxidative stress imposed upon the cell by interfering with the metabolism of selenodiglutathione. This allows the cell to compensate for the loss of cation homeostasis and prevents aggregation of proteolyzed crystallins into cataracts. / Ph. D.
8

Structural and functional characterization of human alphaB-crystallin, a small heat-shock protein and molecular chaperone /

Muchowski, Paul J., January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [128]-146).
9

REGULATION OF CASPASE-3 ACTIVATION BY PHOSPHORYALTED Ab-CRYSTALLIN AND ITS ROLE IN DIFFERENTIATION

Unknown Date (has links)
The lens is responsible for focusing light into the retina. It accomplishes this through its maturation from an epithelial cell into a fiber cell. A large amount of research has been done on cellular differentiation. Nevertheless, we still lack knowledge on many different aspects of differentiation, including a complete theory on the mechanism behind differentiation. Due to the lens’ unique structure and cell types, this is an ideal model for studying differentiation. Our research has shown that αB crystallin, a small heat shock protein, is able to modulate cytochrome C levels and protect the mitochondria under oxidative stress. Also, cytochrome C release is often followed by caspase 3 activation. In addition, research has shown that low levels of caspase 3 activation is essential in driving differentiation. My work examined if αB crystallin could modulate cytochrome C to lower caspase 3 levels to allow for differentiation rather than apoptosis. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
10

Involvement of O-glcnacylation in lens development and cataract formation

Wang, Kai, January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from PDF title page (viewed on July 15, 2010). Includes bibliographical references.

Page generated in 0.0402 seconds