• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Akies lęšiuko ultragarsinių, biocheminių ir mechaninių savybių įvertinimas / Evaluation of ultrasonic, biochemical and mechanical properties of eye lens

Raitelaitienė, Ramunė 13 January 2006 (has links)
Aging lens undergoes the changes in the amount of water soluble lens proteins and their redistribution from low molecular weight to high. This results in the development of high molecular weight aggregates, which change the lens transparency, increase light scattering and contribute to the hardening of the lens. All these disturbances cause changes in ultrasound attenuation. Hardness of the cataractous lens is one of the major factors influencing the suitability of a patient for fhacoemulsification. Age and nuclear color have been shown to be good clinical markers of lens hardness, but there is a need of more quantitative and objective examination method. In this work a new methodics of assessement of eye lens hardness in vitro was developed, the hardness of dogs and human eye lenses was assessed experimentally, the investigation of ultrasound attenuation coefficient, the amount of water soluble lens proteins and their distribution to the fractions of different molecular weight was performed. A strong correlation between lens hardness and ultrasound attenuation was investigated. The results enable to evaluate lens hardness pre-operatively and non invasively and help surgeons when choosing patients to the phacoemulsification method of cataract extraction. The performed investigation confirmed that the opacification of the lens is due to the changes in the amount of water soluble lens proteins and the presence of high molecular weight compounds, which disturb the light... [to full text]
12

Evolution du développement de l’œil chez le poisson cavernicole aveugle Astyanax mexicanus / Evolution of Eye Development in the Blind Cavefish Astyanax Mexicanus

Hinaux, Hélène 16 June 2014 (has links)
Le poisson Astyanax mexicanus présente, au sein de la même espèce, plusieurs populations de poissons de rivières (SF) et de poissons de grottes aveugles (CF). Chez les poisons cavernicoles aveugles, les yeux se développent presque normalement pendant l’embryogenèse. Mais 24 heures après la fécondation (hpf), quand l’embryon éclot, le cristallin entre en apoptose, ce qui déclenche la dégénérescence progressive de l’œil entier. Mon projet de thèse visait à comprendre le mécanisme conduisant à l’apoptose du cristallin, jusqu’alors totalement incompris, en partant du postulat selon lequel le défaut devait avoir lieu pendant les stades précoces du développement du cristallin. Le cristallin se développe à partir d’une placode, un épaississement de l’ectoderme au stade neurula. Toutes les placodes, qui donnent naissance à des organes des sens de la tête, sont issues du champ panplacodal, situé à la bordure de la plaque neurale antérieure à 10 hpf. Nous avons comparé la régionalisation de ce champ chez les deux morphes, par hybridations in situ de gènes marqueurs des différentes placodes. Chez le CF, le territoire présomptif du cristallin est réduit à 10 hpf, et le cristallin est plus petit à tous les stades étudiés. D’autre part, la placode olfactive est étendue, et donne naissance à un épithélium olfactif plus large chez le CF. Les modifications de taille de ces deux placodes pourraient être le résultat évolutif d’un « trade-off » entre ces deux composantes sensorielles. La régionalisation modifiée du champ panplacodal chez le CF est due au moins partiellement à des différences spatiales et temporelles d’expression des molécules de signalisation Shh, Fgf, et peut-être Bmp4.Nous avons pensé que la petite taille du cristallin pouvait être la cause directe de son entrée en apoptose, par un défaut d’effet de communauté. Nous avons réalisé une ablation laser partielle des cellules précurseurs du cristallin à 12-14 hpf chez l’embryon SF, mimant ainsi la taille du cristallin CF. L’apoptose dans le petit cristallin des larves SF à 60 hpf n’a pas été augmentée, ce qui montre que la petite taille n’est pas suffisante pour induire l’apoptose.L’apoptose du cristallin pourrait aussi provenir de défauts de morphogenèse ou d’un problème de lignage cellulaire. Nous utilisons donc l’imagerie biphoton in vivo sur des embryons SF et CF, de 10 à 24 hpf, préalablement injectés au stade une cellule avec des ARNm de H2B-mCherry et Ras-GFP pour marquer les noyaux et les membranes. Les premiers résultats sur les poissons de surface montrent que nous pouvons suivre à rebours les cellules du cristallin de la fin du film jusqu’au champ panplacodal, et étudier la morphogenèse et les divisions.La différenciation du cristallin est également affectée chez le CF : au moins 5 cristallines, qui sont des protéines structurales du cristallin, ne sont pas exprimées correctement chez le CF, d’après des hybridations in situ et des qPCR. Cependant, le rôle fonctionnel de deux de ces modifications d’expression a été testé, et individuellement, elles n’expliquent pas le phénotype apoptotique. Nous émettons l’hypothèse qu’une combinaison de défauts d’expression de plusieurs cristallines serait à l’origine de l’apoptose du cristallin CF. Enfin, et plus largement, les forces évolutives qui ont conduit à la perte de l’œil chez Astyanax mexicanus ne sont pas encore comprises. Par une étude d’évolution moléculaire à l’échelle du transcriptome nous avons identifié des mutations fixées entre SF et CF, et avons pu mettre en évidence une accumulation de mutations dans des « gènes d’yeux » chez les CF. Cela suggère un relâchement de la pression de sélection sur ces gènes, peut-être devenus inutiles dans l’obscurité. De même, les séquences des cristallines de CF paraissent accumuler des mutations fixées à un taux élevé vu leur bas niveau de polymorphisme. / The fish Astyanax mexicanus presents, within the same species, several populations of river-dwelling surface fish (SF) and blind cave-living fish (CF). In blind cavefish, the eyes first develop almost normally during embryogenesis. But 24 hours after fertilization (hpf), when the embryo hatches, the lens enters apoptosis, which triggers the progressive degeneration of the entire eye. My thesis project aimed at understanding the mechanism leading to lens apoptosis, which was so far unknown. We reasoned that the defect(s) should take place during the early stages of lens development. The lens develops from a placode, a thickening of the ectoderm at the neurula stage. All placodes, giving rise to sense organs of the head, originate from the “panplacodal” field, located at the border of the anterior neural plate at 10 hpf. We compared the patterning of the panplacodal field in the 2 morphs, using in situ hybridizations for placodal marker genes. In CF, the lens placode territory is reduced at 10 hpf, and the lens is smaller at all stages examined. Conversely, the olfactory placode is enlarged, and gives rise to a bigger olfactory epithelium in CF. The modifications in size of these two placodes could result evolutionarily from a trade-off between these two sensory components. Developmentally, the modified patterning of the panplacodal field in CF is at least partly due to the spatial and temporal differences in the expression of Shh and Fgf (and perhaps Bmp4) signaling molecules.We hypothesized that the small size of the lens could be the direct cause of its apoptosis, through a lack of community effect. We performed partial laser ablation of lens precursor cells at 12-14hpf in surface fish (thereby mimicking the CF lens size). Apoptosis in the resulting small lens of SF larvae at 60hpf was not enhanced, showing that small size is not sufficient to induce apoptosis. Lens apoptosis could also result from morphogenesis defects or from a problem in cell lineage. We are performing two-photon live imaging, from 10 to 24 hpf, of SF and CF embryos previously injected at the one cell stage with H2B-mCherry and Ras-GFP mRNAs to label nuclei and membranes. First results on surface fish show that we can back-track lens cells to the panplacodal field, and follow morphogenesis and divisions. Lens differentiation is also affected in cavefish: at least 5 crystallins, which are lens structural components, are not expressed correctly in CF, based on in situ hybridization and qPCR data. However the functional role of two of these expression modifications / losses was tested and, individually, they don’t seem to explain the apoptosis phenotype. We propose that a combination of several crystallins expression defects would explain CF lens apoptosis.Finally, and more globally, evolutionary forces that led to eye loss in Astyanax mexicanus are not yet understood. Through a transcriptome-wide molecular evolution approach, we identified fixed mutations in transcripts between SF and CF, and we could show an accumulation of mutations in “eye genes” in CF. This suggests that the selection is relaxed on these genes, that have maybe become useless in the dark. Similarly, CF crystallin sequences seem to accumulate fixed mutations at a high rate, considering their low polymorphism level.
13

Studies of the crystalline lens using magnetic resonance imaging

Jones, Catherine Elizabeth January 2004 (has links)
The eye lens grows continuously throughout life and changes its shape as the eye changes focus from a distant to a near object (the process of accommodation). These changes are complex because they may affect not only the shape of the lens, but also its refractive index distribution. To date there has been no satisfactory technique for directly and non-invasively measuring these changes. In this study the refractive index distribution through the isolated lens was measured non-invasively using a novel MRI technique. The dependence of the refractive index value of lens tissue on its transverse relaxation rate (R2) was determined empirically from measurements on lens homogenate samples. Using a multi-spin-echo imaging sequence, data were acquired for constructing R2 maps of a central slice through the isolated lens. These R2 maps were transformed to refractive index maps using the empirically determined dependence of refractive index on R2. Using a standard algorithm for ray tracing through gradient index media, the propagation of light rays through the index map were simulated. The optical properties of the lens, such as focal length, were then measured. The technique was validated by also directly measuring the focal length of each lens using laser ray tracing. The subtle changes in refractive index distribution that are responsible for the dramatic change in the optical properties of the isolated lens with age, were observed for the first time. The decrease in surface power of the isolated lens with age accounted only partially for the decrease in total lens power with age, the remainder resulting from a reduction in the gradient of refractive index (GRIN) power. It is likely that this reduction in GFUN power is the mechanism by which the eye maintains emmetropia (good distant vision) with age despite the increasing curvature of its surfaces. The reduction in the GRIN power of the lens was found to be mainly due to a flattening of the refractive index profile in the central region of the lens, accompanied by steepening of the profile near the edge of the lens. In agreement with a previous MRI study of the isolated human eye lens, this study found a decrease in the refractive index of the nucleus with age. However the age related change in this study was not as large and not found to be statistically significant. The results demonstrate that existing simple models for the optics of the eye lens are inadequate to accurately describe its properties. Several more sophisticated models were considered in an attempt to describe better the age-dependent changes that occur in both the power of the lens and its longitudinal aberration. Mathematical modelling was also used to simulate the accommodative process and investigate possible changes in the index distribution of the lens that may occur with accommodation. A preliminary in vivo study was performed aimed at observing the change in the refractive index distribution of the eye lens with age and accommodation. These results demonstrated the feasibility of the technique for in vivo applications and showed that within experimental error there is little change in the central refractive index of the lens with age. However the resolution achievable with standard clinical imaging sequences and signal detection hardware was not optimal for in vivo refractive index mapping of changes in the human eye lens with accommodation. Finally therefore, methods for refining the technique for in vivo applications are discussed which may make it possible to directly and simultaneously measure both the shape and refractive index distribution of the lens with age and accommodation.
14

NMR Solution Structures of Human γC-Crystallin & the Intrinsically Disordered Viral Genome Linked Protein in the Free & Bound Form

Dixit, Karuna January 2016 (has links) (PDF)
This thesis describes the tertiary structures and dynamic studies of two protein systems. The first is human γC -crystallin protein, which is present in the nucleus of the human eye lens and the other is the plant viral protein VPg (an intrinsically disordered protein) in its free as well as its protease bound forms. The structural studies described here have been carried out using high-resolution solution NMR spectroscopic methods. Project I: Determination of solution structure and dynamics of Human γC-crystallin (HGC) using NMR spectroscopy The crystallins are the most abundant proteins in the eye lens of vertebrates. These proteins are packed in short-range spatial order to provide the transparency and appropriate refractive index gradient that are required for vision. The crystallins belong to two gene families, which are categorized as the alpha and beta/gamma crystallins respectively. The classification on the basis of molecular size and structure results in the proteins being referred to as alpha, beta and gamma crystallins. Again, each of the crystallins has two or more subtypes. The stoichiometry of the subtypes of α, β and γ crystallins varies with the age of the organism, but the order of abundance remains as β > α > γ irrespective of age. The most abundant crystallins in the nucleus (central region) of eye lens are the γ -crystallins. In the human lens, only three members of the γ− crystallin family are mainly expressed i.e. γS- (HGS), γC - (HGC) and γD - (HGD). HGS is expressed postnatally and thus is present mainly in the cortical region of the lens unlike HGC and HGD crystallins, which are present in the nucleus. It is known that aging and some cataract-associated genetic mutations alter the structure of these proteins. Other point mutations result in minimum structural perturbation but with drastically lowered solubility. Mutation in the human γC -crystallin leads to congenital cataract such as Coppock-like cataract, while structural information is available for HGD & HGS but no structure is available for HGC. However, recently a model structure has been reported for HGC based on a mouse orthologous. Based on this model structure, it was argued that HGC is an insoluble protein and was explained by lower magnitude of dipole moment and fluctuation in N-terminal domain of the model structure. However it is shown that HGC is very soluble protein. Solution structure of human γC-crystallin has been determined from an analysis of multidimensional triple resonance NMR spectroscopy using distance restraints from unambiguously assigned 1H-1H NOE peaks and dihedral angle restraints from HNHA and HNHB spectra. 15N relaxation average T1 and T2 correspond to 0.729 ± 0.02 and 0.060 ± 0.04 second from 15N backbone relaxation study, which gives average rotational correlation time 10.87 ns that shows human γC-crystallin is monomer in solution of molecular weight 21 kDa (173 residues). The ensemble of 20 lowest energy structures shows a root mean square deviation of 0.60 ± 0.12 Å for the backbone atoms, and 1.03 ± 0.09 Å for all heavy atoms. The comparison between the calculated NMR structure with backbone chain atoms C`, Cα and NH, of the x-ray crystal structure of the mouse γC - crystallin shows that the structure determined here of human γC-crystallin is very similar with an RMSD of 1.3 Å, which is not surprising given the 84.5% amino acid sequence identity between the two proteins. More importantly, the NMR structure reported here shows the subtle differences in the orientation of specific residues as well as the domain interface between the human and mouse orthologs. The orientation of the calculated dipole moment for this NMR structure differs from earlier reported for model structure. However it is similar to the other known soluble proteins. The determined solution structure of human γC-crystallin also enables us to estimate the effect of cataract-associative mutations on the structure and properties of the protein. Several such mutations are already known, and the work presented here could likely shed light on the molecular basis of these cataracts. Project II: Solution structural studies of intrinsically disordered protein VPg in free and bound forms from Sesbania mosaic virus Sesbania mosaic virus (SeMV) is a plant virus, which infects the Sesbania grandiflora tree. SeMV belongs to Sobemovirus genus, which is not defined under any family. The length of this viral genome is ~4kb. This viral genome has four open-reading frames (ORF). ORF1 and ORF2 encode movement and coat proteins, respectively. ORF2 is again split into two ORFs i.e. ORF2a and ORF2b by a -1 shift in the reading frame and encode two polypeptide chains. These polypeptide chains generate several functional proteins upon polyprotein processing. Polyprotein processing is a mechanism employed by animal and plant viruses to produce several functional proteins from a single polypeptide chain. The two polyproteins expressed are catalytically cleaved by a serine protease, thus releasing the four proteins: VPg (viral protein genome linked), RdRP (RNA dependent RNA polymerase), P10, and P8. VPg (“Viral Protein genome linked”) as its name suggests, is covalently linked to the 5` end of the viral RNA. VPgs are generally known to be intrinsically disordered proteins and have many interacting partners. Intrinsically Disordered Proteins (IDPs) are not explained by the 3D structure–function dogma. However, they are important for biological functions such as molecular recognition, signal transduction and regulation. It is known that SeMV protease becomes inactive in the absence of the VPg domain at its C-terminal. VPgs of animal viruses are well studied as compared to VPgs of plant virues. The size of VPg varies across the Sobemovirus genus. It is important to know the structure of VPg since it is necessary for protease activity. The studies conducted here focus on the structural analysis of the VPg in its free and bound forms with protease (VPg complex) as well as some aspect of full-length ProVPg. For structural studies, two constructs of VPg as fusion protein with Cytb5 tag, one lacking 23 residues at its C-terminal using the pET21a(+) plasmid vector have been designed. Sub-cloning was also done to add a thrombin recognition site to remove the hexa-His tag from new constructs of full-length ProVPg and protease (PRO). These proteins were highly expressed, isotopically labeled and purified for NMR study. The sample used for structural studies of the ProVPg 23 complex was prepared using selectively protonated Ile, Leu and Val; and isotopically labeled i.e. 2H, 13C, and 15N-VPg 23 protein. VPg in its free form is an intrinsically disordered protein and this has been confirmed by its dynamic nature observed using solution NMR spectroscopy. VPg binds to its partner protease and adopts a 3D-structure, which has been shown here. The tertiary structure has been determined using distance restraints from 1HN-1HN NOEs and methyl 1HN NOEs, and dihedral angle predicted from analysis of chemical shift values. The tertiary structure of ProVPg 23 complex has one β -sheet composed of three antiparallel β-strands and an α-helix. The ensemble of 20 lowest energy structures shows a root mean square deviation of 0.42 ± 0.09 Å for the backbone atoms, and 1.09 ± 0.11 Å for all heavy atoms for residues 15 to 50 that are primarily involved in structure formation. On the other hand RMSD is 2.34 ± 0.72 Å for the backbone and 2.55 ± 0.60 Å for all heavy atoms for all residues including both termini. That the tertiary fold of VPg both in full-length ProVPg and when complexed with protease domain (PRO) are the same has been shown here. The NMR structure reported here provides a structural basis for the origin of resonances in the up-field region of one–dimensional proton spectrum of full length ProVPg. The binding surface based on the structures of ProVPg 23 complex determined here and X-ray structure of PRO; has been determined using HADDOCK. The structural model here of full length ProVPg 23 shows the presence of aromatic interaction between Trp271 of PRO and Trp46 of VPg, which is consistent with the earlier biochemical studies.
15

Συσχετισμός δυναμικών ιδιοτήτων των οφθαλμικών ιστών και παθήσεων του οφθαλμού. Μη-επεμβατική διάγνωση με την χρήση τεχνικών σκέδασης φωτός laser

Πέττα, Βασιλική 12 November 2007 (has links)
Λόγω της διαφάνειας των οφθαλμικών ιστών η σκέδαση φωτός αποτελεί ιδανικό εργαλείο για την ανίχνευση των αρχικών σταδίων ορισμένων παθολογικών τους καταστάσεων. Για παράδειγμα, η θόλωση του φακού των θηλαστικών λόγω ηλικίας ή/και άλλων εξωγενών αιτίων καλείται καταρράκτης. Ο καταρράκτης δεν μπορεί να διαγνωστεί κλινικά σε πρώιμο στάδιο με αποτέλεσμα την δημιουργία σοβαρών προβλημάτων στην όραση. Το γεγονός ότι το φως έχει την ικανότητα να ανιχνεύει τις μοριακές αλλαγές οι οποίες είναι πρόδρομα συμπτώματα του καταρράκτη αναδεικνύει την σημασία της έγκαιρης διάγνωσης στην αντιμετώπιση διάφορων οφθαλμικών παθήσεων. Ο φακός θεωρείται ως ένα πυκνό διάλυμα πρωτεϊνών (κρυσταλλίνες, ~40 % wt) σε νερό και η αδιαφάνεια η οποία αποτελεί την εκδήλωση του καταρράκτη προκαλείται ουσιαστικά από την συσσωμάτωση των πρωτεϊνών. Στόχος αυτής της διατριβής είναι η διερεύνηση των μοριακών μεταβολών οι οποίες λαμβάνουν χώρα κατά την ανάπτυξη του καταρράκτη. Ιδιαίτερη σημασία δίνεται επίσης στην ανάπτυξη μιας μη-επεμβατικής μεθοδολογίας για έγκαιρη διάγνωση οφθαλμικών παθήσεων με τη βοήθεια της δυναμικής σκέδασης φωτός. Με την βοήθεια της τεχνικής αυτής, κατάλληλα τροποποιημένης για την μελέτη οφθαλμικών ιστών, μελετήθηκαν οι δυναμικές ιδιότητες των πρωτεϊνών χοίρειων φακών (π.χ. οι συντελεστές διάχυσης, η θερμοκρασιακή τους εξάρτηση σε διάφορα μέρη του φακού, κλπ.) χρησιμοποιώντας το πειραματικό μοντέλο του “ψυχρού” καταρράκτη. Στο μοντέλο αυτό η ελεγχόμενη ψύξη φακών επιφέρει βαθμιαία καταρρακτογένεση. Ιδιαίτερη έμφαση δόθηκε σε τέσσερα κυρίως είδη περαμάτων. (α) Μελέτη της εμφάνισης του ψυχρού καταρράκτη στον πυρήνα του φακού. (β) Μελέτη της επίδρασης του μήκους κύματος της ακτινοβολίας στην εμφάνιση και στην έκταση του φαινομένου του ψυχρού καταρράκτη. (γ) Μελέτη του φαινομένου του ψυχρού καταρράκτη κατά μήκος μιας διαμέτρου του φακού, δεδομένης της βαθμίδας συγκέντρωσης των πρωτεϊνών του φακού (μεγάλη συγκέντρωση στον πυρήνα και μικρή συγκέντρωση στην περιφέρεια του φακού). (δ) Μελέτη του επίδρασης της προθέρμανσης του φακού σε θερμοκρασίες υψηλότερες της φυσιολογικής στο φαινόμενο του ψυχρού καταρράκτη. Τα βασικά συμπεράσματα της παρούσας διατριβής συνοψίζονται ως εξής. Υπάρχουν σαφείς συσχετισμοί μεταξύ των φασματικών χαρακτηριστικών (συναρτήσεις αυτοσυσχέτισης) και των ιεραρχικών σταδίων ανάπτυξης του καταρράκτη. Ποιοτικές και ποσοτικές αλλαγές στην θερμοκρασιακή εξάρτηση διαφόρων παραμέτρων, οι οποίες σχετίζονται με τις μοριακές διαμορφώσεις των αρχικών σταδίων του καταρράκτη, εμφανίζονται ήδη από τους 17 oC όπου ο πυρήνας του φακού είναι ακόμα διαυγής. Η χρήση ακτινοβολίας κοντά στο υπεριώδες μέρος τους φάσματος ενισχύει την ανάπτυξη του ψυχρού καταρράκτη στον πυρήνα του φακού. Ο ψυχρός καταρράκτης δεν αναπτύσσεται στην περιφέρεια του φακού. Η προθέρμανση του φακού σε συγκεκριμένη θερμοκρασία καθώς και ο χρόνος παραμονής σε αυτήν επηρεάζει σημαντικά την ανάπτυξη του ψυχρού καταρράκτη στον πυρήνα αλλά όχι στην περιφέρεια του φακού. Όλα τα παραπάνω δείχνουν πως η δυναμική σκέδαση φωτός μπορεί να παρέχει παραμέτρους οι οποίες μπορούν να χρησιμοποιηθούν με επιτυχία ως ευαίσθητοι και αξιόπιστοι δείκτες της έγκαιρης, μη-επεμβατικής, και in vivo διάγνωσης του καταρράκτη. / On account of the transparency of ophthalmic tissues, light scattering is an ideal tool for detecting the early stages of some of their pathological conditions. For example, the opacity of the mammalian lens due to age or other external causes is called cataract. Cataract cannot be detected clinically at early stages and as a result serious vision problems appear. The fact that, light has the ability to detect molecular changes that are related to the mechanism of cataract formation draws attention to the importance of early diagnosis in ophthalmic disorders. The lens can be considered as a dense colloidal protein dispersion (crystallins, ~ 40% wt) in water where the opacity that leads to cataract formation how its basis to the aggregation of proteins. This dissertation is aimed at studying the molecular changes that take place upon cataract development. Particular emphasis is paid to the development of a non-invasive methodology for early diagnosis of ocular diseases with the aid of dynamic light scattering. By means of this technique, suitably modified for the study of ophthalmic tissues, the dynamic properties of the proteins of porcine lenses (e.g. diffusion coefficients and their temperature dependence at various parts inside the lens, etc.) were studied by using the experimental model of ‘cold’ cataract. In cold cataract the controlled cooling of the lens at temperatures below the physiological one induces gradual cataractogenesis. In particular, we focused on four kinds of experiments. (a) Detailed study on the cold cataract onset in the lens nucleus. (b) Study on the effect of the laser light wavelength in the onset and the extent development of cold cataract. (c) Study of the cold cataract effect along an equatorial diameter of the lens, considering the gradual concentration of the lens proteins (high protein concentration in the nucleus and low concentration in the cortex). (d) Study on the effect of thermal history, i.e. by warming up the lens at temperatures higher than the physiological one on the cold cataract effect. The basic conclusions of the present dissertation are summarized as follows: There are clear correlations between the spectral characteristics (autocorrelation functions) and the hierarchical stages of the onset of cataract. Qualitative and quantitative changes in the temperature dependence of several parameters, which are related with the diffusive motions of proteins at the early stages of cataract, appear already at 17 oC while the nucleus is still clear and highly transparent. The use of laser radiation close to the ultraviolet part of the spectrum seems to enhance the formation of cold cataract in the lens nucleus. Cold cataract does not develop at the cortex of the lens, in view of the low protein concentration. The lens pre-heating at a certain temperature for various time periods affects significantly cold cataract formation in the lens nucleus but not in lens cortex. The above mentioned make clear that dynamic light scattering can indeed provide useful parameters that can be successfully used as sensitive and reliable indicators for the early, non-invasive diagnosis of cataract in mammalian lenses and in vivo.
16

Calcium homeostasis in lens transparency and the involmement of calpains in cataract

Lee, Hannah Yun Young January 2006 (has links)
The absolute clarity of the lens of the eye is vital in the visual system. The unique structural and physiological properties of the lens are tightly integrated with highly ordered protein content to allow the lens to remain transparent. Consequently, any alteration or disturbance of these highly ordered proteins can affect the optical properties of the lens. In humans, cataracts are the major cause of blindness, yet the exact aetiology of cataract formation (cataractogenesis) is not fully understood. The purpose of the current research was to investigate whether deregulation of the Ca²⁺-dependent enzyme, calpains, following changes in lens Ca²⁺ homeostasis, is a key mechanism leading to undesired cleavage of a number of proteins that are linked with maintaining lens transparency and contributing to cataractogenesis. An ovine lens culture (in vitro) system and the heritable ovine cataract (in vivo) model were used to test the research hypothesis. The Ca²⁺ ionophore, ionomycin, was used to induce a Ca²⁺ overload and in vitro opacification during lens culture. Opacity in the lens was graded by a computer image analysis program. Protein profile (SDS-PAGE, 2-DE and Western detection), calpain activity (casein zymography), lens structure (microscopic view) and cytotoxicity level (LDH leakage assay) were analysed in Ca²⁺-induced opaque lenses. The involvement of calpain during opacification was further examined by applying synthetic exogenous calpain inhibitors to the in vitro system. Two novel exogenous calpain inhibitors were also assessed for their therapeutic potential in preventing the progression of cataracts in the in vivo cataract model by topical administration of the inhibitor direct to the sheep's eye over a 11 week period. HPLC was used to detect the penetration of these compounds into ocular tissues. Sustained Ca²⁺ influx into cultured lenses caused dense opacification. The opacity was characterised by formation of a turbid fraction and cell death in the outer cortex of the ovine lens. There was increased calpain autolysis associated with the progress of opacification, indicating increased calpain activity. Major degradation of the cytoskeletal proteins, spectrin and vimentin, was observed whilst there was limited degradation of the lens structural soluble proteins, crystallins, in response to a Ca²⁺ flux. Lens proteins were protected from degradation by adding synthetic calpain inhibitors to the culture medium. Topical administration of novel anti-calpain molecules failed to retard the progression of cataractogenesis in the ovine inherited cataract model. Further investigation of drug penetration showed that efficacy of inhibitory compounds was limited by permeability of these molecules across the cornea and the ability of the molecules to reach and penetrate into the lens. The ovine lens Ca²⁺-induced opacification (OLCO) model in this thesis has provided a model to understand the role of Ca²⁺ homeostasis in lens transparency. With sustained intracellular Ca²⁺ level, the degradation of cytoskeletal elements is highly correlated with calpain activity. Cataractogenesis is the pathological response to the loss of lens Ca²⁺ homeostasis in this model. The current results support the hypothesis that the deregulation of calpain activity is a trigger for a series of cascading events, leading to death of the cells in the lens.

Page generated in 0.0616 seconds