• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural analysis of low melting organic salts an approach to ionic liquid design

Dean, Pamela Mary January 2009 (has links)
Ionic liquid forming compounds often display low melting points (a lack of crystallisation at ambient temperature and pressure) due to decreased lattice energies in the crystalline state. The degree of anion-cation contact with respect to the type, strength and number of interactions is a major factor determining the lattice energies, melting point and general behaviour of ionic liquid forming salts. Intermolecular interactions between the anion and cation and the conformational states of each component of the salt are of interest since distinctive properties ascribed to ionic liquids are determined to a significant extent by these interactions. The direct insight into the spatial relationship between cation and anion provided by the analysis of crystal structures provides a basis from which features of the ionic liquid can be generally understood, since the short range order and interactions of related, non-crystalline compounds may be similar to those of the crystalline form. However, it is difficult to predict whether a particular ionic pair will produce a liquid at room temperature, due to numerous possible combinations of cations and anions and the subtleties of their interactions. Crystal engineering is the ability to assemble molecular or ionic components into the desired crystalline architecture by engineering a target network of supramolecular interactions known as synthons. In this investigation the problem of ionic liquid design is addressed using the concepts of crystal engineering in an inverse sense, the so-called anti crystal-engineering approach. A topical area in which the anti crystal-engineering concept may be of some value is that of Ionic Liquid Phases of Pharmaceutically Active Ions (Active Ionic Liquids). Thus, by using the knowledge gained of the intermolecular interactions, packing and ionic conformation which occur within ‘traditional’ ionic liquids, combined with the knowledge of which functional group combinations yield supramolecular synthons resulting in crystalline subjects, and the subsequent prevention thereof (anti crystal-engineering), appropriate ions shall be selected which may result in ionic liquid formation. The intermolecular interactions of a series of: • crystallised bis(trifluoromethanesulfonyl)amide (NTf2) and bis(methanesulfonyl)amide (NMes2) ionic liquids, • low melting N-alkyl-2-methyl-3-benzylimidazolium iodide salts with a range of alkyl chain lengths, from n=1 to 6 and including both n-butyl and s-butyl chains, • 1-methyl-1-propylpyrrolidinium chloride and, • a number of low melting salts containing trihalide and monohalide ions, in combination with typical IL organic cations namely, 1-ethyl-3-methylimidazolium, 1-ethyl-1-methylpyrrolidinium and 1-propyl-1-methylpyrrolidinium, were qualitatively investigated and/or compared using a combination of crystallographic, Hirshfeld surface and thermal analysis techniques. The NMes2 salts are known to exhibit higher glass transitions and higher viscosities than those of the NTf2 salts. The origins of these differences were analysed in terms of the importance of factors such as the C-H•••O hydrogen bond, fluorination, presence of an aromatic moiety and length of alkyl chain, using the Hirshfeld surfaces and their associated fingerprint plots. Additionally, the existence of C-F•••π and C-H•••π interactions were elucidated and the significance of anion-anion interactions was recognised. Thermal analysis of the N-alkyl-2-methyl-3-benzylimidazolium iodide salts revealed that the methyl- and (s-)butyl substituted salts have a significantly higher melting point than the rest of the series. Analysis of these crystal structures allowed examination of the influence of the substitutions on the different cation-anion and cation-cation interactions and thus the physical properties of the salts. Thermal analysis of the monohalide and trihalide salts revealed that the tribromide salts are lower melting than their monohalide analogues. Analysis of these crystal structures revealed the influence of the anions and the crystal packing on the physical properties of the salts. A series of crystalline and liquid salts were prepared from cations and anions drawn from Active Pharmaceutical Ingredients (APIs) and Generally Recognized As Safe (GRAS) materials. The solid-state structures of the crystalline salts were used as a basis for the anti-crystal engineering approach in the preparation of several “Active Ionic Liquids” (AILs). However, a side product also resulted during the synthetic route namely, methyl 9H-xanthene-9-carboxylate, a side product resulting from the API, propantheline. The results and methodology of the anti-crystal engineering procedure and the subsequent successful preparation and characterization of pharmaceutical ionic compounds are reported herein.
2

Scalabilité et amélioration des propriétés de couplage d'échange pour TA-MRAM / Scalability and improvement of exchange bias properties for Thermally Assisted MRAM

Vinai, Giovanni Maria 16 December 2013 (has links)
Le couplage d’échange entre une couche ferromagnétique (F) et une couche antiferromagnétique (AF) permet de piéger l’aimantation de la couche ferromagnétique. Ce phénomène est largement utilisé dans des systèmes magnétiques complexes, telles que les vannes de spins, ou les mémoires MRAM, où il permet de constituer des couches de références, normalement insensibles aux cycles d’écriture des couches de stockage. On remarque aux petites dimensions, lorsque la taille des cellules diminue en dessous de la centaine de nm, des renversements partiels ou complets des électrodes de référence, dus à un basculement du réseau de spins dans l’AF. L’objectif de cette thèse est de comprendre ces phénomènes de renversement, de les quantifier en fonction de la dimension latérale des dispositifs, et de présenter des solutions viables afin d’accroître la stabilité des systèmes de stockage. Ce travail essentiellement expérimental, comprenant dépôts, lithogravure et caractérisations, se déroulera pour la majeure partie au sein du laboratoire SPINTEC (UMR8191). L’étudiant sera cependant amené à collaborer avec plusieurs entités du pôle grenoblois, notamment pour les mesures magnéto-optiques, les analyses cristallographiques, ainsi que pour une partie de simulation atomistique ; il devra aussi s’intéresser à l’intégration industrielle de ses études en rendant compte de ses résultats, en les discutant, afin que Crocus Technology en bénéficie directement. La thèse, se déroulant sur trois ans, explorera les points suivants : i) Etude de la stabilité thermique en fonction de la taille des motifs (0-15mois) L’étudiant déposera par pulvérisation cathodique des bicouches F/AF (AF=FeMn, PtMn ou IrMn) qui seront gravées sur la plate forme de technologie amont (PTA) localisée sur le site du CEA/Grenoble. Il caractérisera par des mesures d’effet kerr ou de magnétotransport les propriétés magnétiques des bicouches, notamment les distributions de TB, de champ d’échange, en fonction de la taille des motifs. Il participera aux analyses cristallographiques en collaboration avec le Service général des rayons X et le laboratoires d'Etude des Matériaux par Microscopie Avancée (LEMMA) (du CEA/Grenoble/INAC/SP2M). Ces analyses qui donneront des renseignements sur les tailles de grains et leur distribution seront utilisées pour comprendre les mesures magnétiques dans un premier temps, et seront un point de départ pour optimiser via des recuits, ou l’ajout d’éléments d’addition, la stabilité des systèmes aux dimensions réduites, typiquement <100nm. ii) Etude du couplage inter-grain dans l’AF (15-22mois) L’étudiant réalisera des mesures de trainage magnétique et déterminera les volumes de nucléation dans l’AF et les comparera aux données cristallographiques. Il essaiera de déterminer l’importance de ce couplage dans la stabilité des points mémoire en jouant sur son intensité (recuits, éléments d’addition…), ceci participant de l’optimisation de l’anisotropie d’échange aux petites dimensions présentée dans la partie précédente. iii) Volet de simulations atomistiques (22-30mois) L’étudiant collaborera avec le laboratoire LSIM et notamment F. Lançon afin de simuler, grâce à un code de calcul développé localement, l’impact de la cristallographie (taille de grains, couplage inter-grains, désordre interfacial et rugosité) sur les propriétés de l’anisotropie d’échange dans les systèmes F/AF de taille réduite. Ces simulations permettront de comprendre les mesures expérimentales réalisées en parallèle et d’ouvrir de nouvelles voies exploratoires pour optimiser les valeurs de champ d’échange en vue de leur intégration dans les dispositifs. / Exchange coupling between a ferromagnetic (F) and an antiferromagnetic (AF) layer is responsible of a higher coercivity and of a shift in the hysteresis loop. This phenomenon is widely used in magnetic systems like spin-valves and MRAM to set the reference layer, that remains fixed during the writing processes of the storage layer. It has been noticed that, for systems with reduced lateral size , the magnetization of the reference layer can (completely or partially) reverse because of spin switches in the AF layer. The aim of this thesis project is the understanding of these reversal phenomena, the quantification as a function of lateral dimension and the proposal of feasable solutions in order to increase the stability of the storage layer. The thesis will be maily experimental, including deposition, lithography and characterization processes. The main part of the thesis will be spent at SPINTEC (UMR8191) laboratories. The student will also collaborate with other research groups in Grenoble, in particular for magneto-optical measurements, crystallographic analysis, and atomic simulations. He will also manage the industrial integration of his studies, by sharing and discussing his results with Crocus Technology. The thesis, during a period of three years, will cover the following subjects: i) Study of the termal stability as a function of lateral size (0-15 months). The student will deposit F/AF bilayers being AF FeMn, PtMn or IrMn) by magnetron sputtening. These layers will be etched at Pthe TA cleanroom facility, in CEA-Grenoble. TB and exchange field distributions will be characterized by Kerr effect and magnetotrasport measurements as a function of lateral size. He will collaborate to the crystallographic analysis with the X-ray general service and the 'laboratoires d'Etude des Matériaux par Microscopie Avancée' (LEMMA) (CEA/Grenoble/INAC/SP2M). These analysis, that will give informations about grain size and distribution, will help the understanding of the magnetic measurements and will be a starting point for an optimization, through annealing steps or additional elements, of the stability of systems with reduced lateral size (typically below 100nm). ii) Study of AF inter-grain coupling (15-22 months) The student will perform magnetic training measurements. He will determine the nucleation volumes in the AF and compare them with the crystallographic results. He will manage to establish the importance of this coupling in the stability of magnetic memories and to vary its intensity (annealing, additional elements). This study will contribute to optimize the exchange anisotropy at reduced dimensions presented in the previous point. iii) Atomic simulations (22-30 months) The student will collaborate with LSIM laboratory, in particular with F.Lançon. He will simulate the impact of crystallography (grain size, inter-grain coupling, interfacial disorder, rugosity) on exchange anisotropy properties in F/AF systems with reduced lateral size. Simulations will be performed with a code developped in the lab. These simulations will help in understanding the experimental measures performed previously, and will give new suggestions in the optimization process of the exchange field for technological integration.

Page generated in 0.0849 seconds