1 |
Symmetries and automorphisms of compact Riemann surfacesWatson, Paul Daniel January 1995 (has links)
No description available.
|
2 |
Weak Cayley Table Groups of Crystallographic GroupsPaulsen, Rebeca Ann 03 December 2021 (has links)
Let G be a group. A weak Cayley table isomorphism $\phi$: G $\rightarrow$ G is a bijection satisfying two conditions: (i) $phi$ sends conjugacy classes to conjugacy classes; and (ii) $\phi$(g1)$\phi$(g2) is conjugate to $\phi$(g1g2) for all g1, g2 in G. The set of all such mappings forms a group W(G) under composition. We study W(G) for fifty-six of the two hundred nineteen three-dimensional crystallographic groups G as well as some other groups. These fifty-six groups are related to our previous work on wallpaper groups.
|
3 |
An Algorithmic Approach To Crystallographic Coxeter GroupsMalik, Amita 05 1900 (has links) (PDF)
Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. It turns out that the finite Coxeter groups are precisely the finite Euclidean reflection groups. Coxeter studied these groups and classified all finite ones in 1935, however they were known as reflection groups until J. Tits coined the term Coxeter groups for them in the sixties.
Finite crystallographic Coxeter groups, also known as finite Weyl groups, play a prominent role in many branches of mathematics like combinatorics, Lie theory, number theory, and geometry. The computational aspects of these groups are of great interests and play a very important role in representation theory. Since it’s enough to study only the irreducible class of groups in order to understand any Coxeter group, we discuss irreducible crystallographic Coxeter groups here.
Our goal is to try to deal with some of the fundamental computational problems that arise in working with the structures such as Weyl groups, root system, Weyl characters. For the classical cases, especially type A, many of these problems are not very subtle and have been solved completely. However, these solutions often do not generalize.
In this report, our emphasis is on algorithms which do not really depend on the classifications of root systems. The canonical example, we always keep in mind is E8. In chapter 1, we fix the notations and give some basic results which have been used in this report. In chapter 2, we explain algorithms to various Weyl group problems like membership problem; how to find the length of an element; how to check if two words in a Weyl group represent the same element or not; finding the coset representative for an element for a given parabolic subgroup; and list all the expressions possible for an element. In chapter 3, the main goal is to write an algorithm to compute the weight multiplicities of the irreducible representations using Freudenthal’s formula. For this, we first compute the positive roots and dominant weights for a given root system and then finally find the weight multiplicities. We argue this mathematically using the results given in chapter 1. The crystallographic hypothesis is unnecessary for much of what is discussed in chapter 2. In the last chapter, we give codes of the computer programs written in C++ which implement the algorithms described in the previous chapters in this report.
|
4 |
Affine Hermite-Lorentz manifolds / Variétés affines Hermite-LorentzBarucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.
|
5 |
Genera of Integer Representations and the Lyndon-Hochschild-Serre Spectral SequenceChris Karl Neuffer (11204136) 06 August 2021 (has links)
There has been in the past ten to fifteen years a surge of activity concerning the cohomology of semi-direct product groups of the form $\mathbb{Z}^{n}\rtimes$G with G finite. A problem first stated by Adem-Ge-Pan-Petrosyan asks for suitable conditions for the Lyndon-Hochschild-Serre Spectral Sequence associated to this group extension to collapse at second page of the Lyndon-Hochschild-Serre spectral sequence. In this thesis we use facts from integer representation theory to reduce this problem to only considering representatives from each genus of representations, and establish techniques for constructing new examples in which the spectral sequence collapses.
|
6 |
Grupos de tranças Brunnianas e grupos de homotopia da esfera S2 / Brunnian braid groups and homotopy groups of the sphere S2Ocampo Uribe, Oscar Eduardo 02 July 2013 (has links)
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualmente um tópico de bastante interesse. Nos últimos anos tem sido feitos avanços consideráveis no estudo desta relação no caso dos grupos de tranças de Artin com n cordas, denotado por Bn, da esfera e do plano projetivo. Nessa tese analisamos com detalhes as interações entre a teoria de tranças e a teoria de homotopia, e mostramos novos resultados que estabelecem conexões entre os grupos de homotopia da 2-esfera S2 e os grupos de tranças sobre qualquer superfície. No andamento deste trabalho, descobrimos uma conexão surpreendente dos grupos de tranças com os grupos cristalográficos e de Bieberbach: para n maior ou igual que 3, o grupo quociente Bn/[Pn, Pn] é um grupo cristalográfico que contém grupos de Bieberbach como subgrupos, onde Pn é o subgrupo de tranças puras de Bn. Com isto obtivemos uma formulação de um Teorema de Auslander e Kuranishi para 2-grupos finitos e exibimos variedades Riemannianas compactas planas que admitem difeomorfismo de Anosov e cujo grupo de holonomia é Z2k . Além disso, durante esta tese, detectamos e, quando possível, corrigimos algumas imprecisões em dois importantes artigos nessa área de estudo, escritos por J. Berrick, F. R. Cohen, Y. L. Wong e J. Wu (Jour. Amer. Math. Soc. - 2006) assim como por J. Y. Li e J.Wu (Proc. London Math. Soc. - 2009). / The relation between surface braid groups and homotopy groups of spheres is currently a subject of great interest. Considerable progress has been made in recent years in the study of these relations in the case of the n-string Artin braid groups, denoted by Bn, the sphere and the projective plane. In this thesis we analyse in detail the interactions between braid theory and homotopy theory, and we present new results that establish connections between the homotopy groups of the 2-sphere S2 and the braid groups of any surface. During the course of this work, we discovered an unexpected connection of braid groups with crystallographic and Bieberbach groups: for n greater or equal than 3, the quotient group Bn/[Pn, Pn] is a crystallographic group that contains Bieberbach groups as subgroups, where Pn is the pure braid subgroup of Bn. This enables us to obtain a formulation of a theorem of Auslander and Kuranishi for finite 2-groups, and to exhibit Riemannian compact flat manifolds that admit Anosov diffeomorphisms and whose holonomy group is Z2k. In addition, during the thesis, we have detected, and where possible, corrected some inaccuracies in two important papers in the area of study, by J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu (Jour. Amer. Math. Soc. - 2006), and by J. Y. Li and J. Wu (Proc. London Math. Soc. - 2009).
|
7 |
Grupos de tranças Brunnianas e grupos de homotopia da esfera S2 / Brunnian braid groups and homotopy groups of the sphere S2Oscar Eduardo Ocampo Uribe 02 July 2013 (has links)
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualmente um tópico de bastante interesse. Nos últimos anos tem sido feitos avanços consideráveis no estudo desta relação no caso dos grupos de tranças de Artin com n cordas, denotado por Bn, da esfera e do plano projetivo. Nessa tese analisamos com detalhes as interações entre a teoria de tranças e a teoria de homotopia, e mostramos novos resultados que estabelecem conexões entre os grupos de homotopia da 2-esfera S2 e os grupos de tranças sobre qualquer superfície. No andamento deste trabalho, descobrimos uma conexão surpreendente dos grupos de tranças com os grupos cristalográficos e de Bieberbach: para n maior ou igual que 3, o grupo quociente Bn/[Pn, Pn] é um grupo cristalográfico que contém grupos de Bieberbach como subgrupos, onde Pn é o subgrupo de tranças puras de Bn. Com isto obtivemos uma formulação de um Teorema de Auslander e Kuranishi para 2-grupos finitos e exibimos variedades Riemannianas compactas planas que admitem difeomorfismo de Anosov e cujo grupo de holonomia é Z2k . Além disso, durante esta tese, detectamos e, quando possível, corrigimos algumas imprecisões em dois importantes artigos nessa área de estudo, escritos por J. Berrick, F. R. Cohen, Y. L. Wong e J. Wu (Jour. Amer. Math. Soc. - 2006) assim como por J. Y. Li e J.Wu (Proc. London Math. Soc. - 2009). / The relation between surface braid groups and homotopy groups of spheres is currently a subject of great interest. Considerable progress has been made in recent years in the study of these relations in the case of the n-string Artin braid groups, denoted by Bn, the sphere and the projective plane. In this thesis we analyse in detail the interactions between braid theory and homotopy theory, and we present new results that establish connections between the homotopy groups of the 2-sphere S2 and the braid groups of any surface. During the course of this work, we discovered an unexpected connection of braid groups with crystallographic and Bieberbach groups: for n greater or equal than 3, the quotient group Bn/[Pn, Pn] is a crystallographic group that contains Bieberbach groups as subgroups, where Pn is the pure braid subgroup of Bn. This enables us to obtain a formulation of a theorem of Auslander and Kuranishi for finite 2-groups, and to exhibit Riemannian compact flat manifolds that admit Anosov diffeomorphisms and whose holonomy group is Z2k. In addition, during the thesis, we have detected, and where possible, corrected some inaccuracies in two important papers in the area of study, by J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu (Jour. Amer. Math. Soc. - 2006), and by J. Y. Li and J. Wu (Proc. London Math. Soc. - 2009).
|
Page generated in 0.1067 seconds