• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Folding Orthogonal Polyhedra

Sun, Julie January 1999 (has links)
In this thesis, we study foldings of orthogonal polygons into orthogonal polyhedra. The particular problem examined here is whether a paper cutout of an orthogonal polygon with fold lines indicated folds up into a simple orthogonal polyhedron. The folds are orthogonal and the direction of the fold (upward or downward) is also given. We present a polynomial time algorithm to solve this problem. Next we consider the same problem with the exception that the direction of the folds are not given. We prove that this problem is NP-complete. Once it has been determined that a polygon does fold into a polyhedron, we consider some restrictions on the actual folding process, modelling the case when the polyhedron is constructed from a stiff material such as sheet metal. We show an example of a polygon that cannot be folded into a polyhedron if folds can only be executed one at a time. Removing this restriction, we show another polygon that cannot be folded into a polyhedron using rigid material.
2

Folding Orthogonal Polyhedra

Sun, Julie January 1999 (has links)
In this thesis, we study foldings of orthogonal polygons into orthogonal polyhedra. The particular problem examined here is whether a paper cutout of an orthogonal polygon with fold lines indicated folds up into a simple orthogonal polyhedron. The folds are orthogonal and the direction of the fold (upward or downward) is also given. We present a polynomial time algorithm to solve this problem. Next we consider the same problem with the exception that the direction of the folds are not given. We prove that this problem is NP-complete. Once it has been determined that a polygon does fold into a polyhedron, we consider some restrictions on the actual folding process, modelling the case when the polyhedron is constructed from a stiff material such as sheet metal. We show an example of a polygon that cannot be folded into a polyhedron if folds can only be executed one at a time. Removing this restriction, we show another polygon that cannot be folded into a polyhedron using rigid material.
3

My Body In Visual Culture

Ritter, Amy B. 25 September 2014 (has links)
No description available.

Page generated in 0.0389 seconds