• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thiopyran route to polypropionates : proline catalyzed aldol reactions of tetrahydro-4H-thiopyran-4-one

Jheengut, Vishal 25 August 2007
The thiopyran route to polypropionates is an attractive strategy that involves a stepwise iterative aldol homologation of tetrahydro-4H-thiopyran-4-one (I) with thiopyran aldehyde (II) followed by desulfurization to rapidly assemble stereochemically complex polypropionate synthons. <p>In chapter 1, the thesis is summarized in the context of relevant background research including; a) the basic principle of the thiopyran route; b) dynamic kinetic resolution of -substituted aldehydes; c) previous syntheses of serricornin; iv) previous syntheses of membrenones.<p>In chapter 2, proline-catalyzed enantioselective direct intermolecular aldol reactions of tetrahydro-4H-thiopyran-4-one with various achiral aldehydes were studied. The results provided insights on the behaviour and stereoselectivity profile of thiopyranone (a crucial starting block in the thiopyran design) in the proline-catalyzed aldol reaction.<p>In chapter 3, inspired by the results of the aldol reaction of ketone (I) with achiral aldehydes, we next investigated the proline-catalyzed asymmetric aldol reactions of (I) with racemic thiopyran aldehyde (II) as a strategy to rapidly prepare enantiomerically pure tetrapropionate synthons without any requirement of enantioenriched aldehyde. The reaction occurred with high enantiotopic group selectivity and dynamic kinetic resolution.<p>In chapter 4, a detailed study to ascertain the scope and limitations of the design strategy described in chapter 3 was extended towards other catalysts, aldehydes and ketones. <p>Finally, applications of the above mentioned strategy towards the synthesis of serricornin and membrenones A and B are elaborated in chapters 5 and 6 respectively.
2

Thiopyran route to polypropionates : proline catalyzed aldol reactions of tetrahydro-4H-thiopyran-4-one

Jheengut, Vishal 25 August 2007 (has links)
The thiopyran route to polypropionates is an attractive strategy that involves a stepwise iterative aldol homologation of tetrahydro-4H-thiopyran-4-one (I) with thiopyran aldehyde (II) followed by desulfurization to rapidly assemble stereochemically complex polypropionate synthons. <p>In chapter 1, the thesis is summarized in the context of relevant background research including; a) the basic principle of the thiopyran route; b) dynamic kinetic resolution of -substituted aldehydes; c) previous syntheses of serricornin; iv) previous syntheses of membrenones.<p>In chapter 2, proline-catalyzed enantioselective direct intermolecular aldol reactions of tetrahydro-4H-thiopyran-4-one with various achiral aldehydes were studied. The results provided insights on the behaviour and stereoselectivity profile of thiopyranone (a crucial starting block in the thiopyran design) in the proline-catalyzed aldol reaction.<p>In chapter 3, inspired by the results of the aldol reaction of ketone (I) with achiral aldehydes, we next investigated the proline-catalyzed asymmetric aldol reactions of (I) with racemic thiopyran aldehyde (II) as a strategy to rapidly prepare enantiomerically pure tetrapropionate synthons without any requirement of enantioenriched aldehyde. The reaction occurred with high enantiotopic group selectivity and dynamic kinetic resolution.<p>In chapter 4, a detailed study to ascertain the scope and limitations of the design strategy described in chapter 3 was extended towards other catalysts, aldehydes and ketones. <p>Finally, applications of the above mentioned strategy towards the synthesis of serricornin and membrenones A and B are elaborated in chapters 5 and 6 respectively.
3

Pressure Effects on Electric Field Spectra of Molecular Rydberg States

Altenloh, Daniel Dean 12 1900 (has links)
Electric field studies, electrochromism, were used to obtain excited-state data for analogous divalent sulfur compounds. The sulfides investigated were dimethyl sulfide and small cyclic sulfides including the three to six member ring compounds. The excited-state dipole moments and polarizabilities are reported for the first s, p, and d Rydberg absorption bands which occur in the near vacuum ultraviolet region from 230 to 170 nm. The excited-state data are interpreted in terms of the particular excited-state (s, p, or d) for the molecules and the bending differences due to the presence of the ring and the number of atoms in the ring. The next section describes the use of electrochromism to investigate the pressure effect of argon, carbon tetrafluoride and sulfur hexafluoride on the spectra for molecular Rydberg states.

Page generated in 0.0683 seconds