• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application de la chimie radicalaire des xanthates à la synthèse et à la fonctionnalisation de systèmes cycliques et polycycliques.

Heng, Rama 08 October 2010 (has links) (PDF)
L'objectif de cette thèse était de démontrer tout le potentiel de la chimie radicalaire des xanthates dans la fonctionnalisation et la synthèse de système cycliques et polycliques variés. Il a été ainsi possible de combiner de manière intéressante chimie radicalaire et chimie ionique, pour créer rapidement et simplement des molécules de structures complexes, et hautement fonctionnalisées. La première partie de cette thèse concerne la fonctionnalisation de cycles à quatre chaînons. Cette étude, commençant par la découverte d'un nouveau mécanisme propre aux cyclobutanones, se termine finalement par la mise au point d'une nouvelle méthodologie d'agrandissement de cycle stéréosélectif. La seconde partie de ces travaux de recherche s'intéresse à la formation de structures polycycliques, par cyclisation radicalaire, grâce à la chimie des xanthates. De nombreux squelettes complexes de terpènes ont ainsi pu être approchés. Une voie est également ouverte pour la fonctionnalisation stéréosélective de systèmes cycliques grâce à la méthodologie développée dans cette thèse.
2

Cyclobutanone Analogues of ??-Lactam Antibiotics as Inhibitors of Serine- and Metallo-??-Lactamases

Johnson, Jarrod William 06 November 2014 (has links)
Bacterial resistance to antibiotics is an emerging epidemic throughout the world and there is a desperate need for new antibiotics and new strategies to maintain the effectiveness of current agents. ??-Lactams, such as the penicillins and cephalosporins, have been the most important class of antibiotic for several decades and represent half of the global antibacterial market, but the continued use of ??-lactams is threatened by ??-lactamases, enzymes that efficiently inactivate ??-lactams through hydrolysis. Class A, C, and D ??-lactamases use an active-site serine residue for hydrolysis and achieve turnover through an acylenzyme intermediate while the class B metallo-??-lactamases (MBLs) use a zinc-bound hydroxide as the active-site nucleophile. Two successful approaches to combat ??-lactamase-mediated resistance have involved the development of ??-lactam antibiotics which bind poorly to ??-lactamases and the combination of ??-lactams with ??-lactamase inhibitors. These strategies have been effective for overcoming resistance due to class A ??-lactamases, but the ever-increasing prevalence of extended-spectrum ??-lactamases (ESBLs), metallo-??-lactamases, and carbapenemases compromises the effectiveness of current penicillins, cephalosporins, carbapenems, and mechanism-based ??-lactamase inhibitors. Cyclobutanone analogues of ??-lactam antibiotics were explored in the early 1980s as potential inhibitors of ??-lactamases and D-Ala-D-Ala transpeptidases, but simple analogues showed only weak inhibitory activity and this approach was subsequently abandoned. The increasing threat of multidrug-resistant ??-lactamase-producing organisms in recent years, however, has inspired a re-evaluation of these inhibitors since cyclobutanones have the potential to exhibit broad-spectrum inhibition of both serine- and metallo-??-lactamases through the formation of enzyme-bound hemiketals or hydrates. 7,7-Dichloro-2-thia-bicyclo[3.2.0]heptan-6-one-4-carboxylic acid (65), a dichlorocyclobutanone that had shown modest inhibition of the class B and D ??-lactamases IMP-1 and OXA-10 in earlier work in this laboratory, was prepared in an efficient seven-step sequence from triethyl phosphonoacetate (103) with an overall yield of 28%. Initial efforts to improve upon the potency of the cyclobutanones involved functionalization at C3 and a highly stereoselective chlorination with sulfuryl chloride provided the 3??-chloro derivative 117?? in nearly quantitative yield. Elimination of HCl from 117?? was achieved under a variety of conditions and 3-alkoxy derivatives were prepared from 117?? through diastereoselective substitution reactions with alcohols. Cyclobutanones with 3??-OR substituents were found to favour an endo envelope conformation while the 3??-OR derivatives adopt the exo envelope conformation. Evidence from X-ray crystal structures and ab initio molecular orbital calculations suggests that an anomeric effect contributes to the large conformational preference of the tetrahydrothiophene ring that favours the 3-alkoxy substituent in an axial orientation. In addition, the conformation of the bicyclic system was found to have a dramatic effect on the tendency of the cyclobutanone to undergo hemiketal formation. Cyclobutanone analogues of penicillins, including 3-alkoxy derivatives, and cyclobutanone analogues of penems were evaluated against class A, B, C, and D ??-lactamases and found to be moderate inhibitors of KPC-2, IMP-1, GC1, and OXA-10. The cyclobutanones found to be most potent were those which are hydrated to a larger extent in aqueous solution. Dichlorocyclobutanones were found to be better inhibitors than dechlorinated cyclobutanones and a 3??-methoxy derivative 152??, which favours the exo envelope conformation in which the C4 carboxylate is equatorial, was found to be a better inhibitor than cyclobutanones that favour the endo envelope conformation. A 3,4-unsaturated penem analogue, 153, showed comparable potency to that of 152?? and molecular models of enzyme-inhibitor complexes indicate that an equatorial carboxylate is required for binding to ??-lactamases. An X-ray crystal structure of 152?? bound to the class D ??-lactamase OXA-10 confirms that a serine hemiketal is formed in the active site and that the inhibitor adopts the exo envelope. The biochemical data described above demonstrate that cyclobutanones can indeed act as inhibitors of serine- and metallo-??-lactamases and these cyclobutanones represent the first class of reversible inhibitors to show moderate inhibition of all four classes of ??-lactamase. Although the inhibitory potency of these compounds is modest (low micromolar IC50 values), penem analogue 153 was able to enhance the potency of meropenem against carbapenem-resistant MBL-producing clinical isolates of Chryseobacterium meningosepticum and Stenotrophomonas maltophilia and the synergy demonstrated in these antimicrobial assays is encouraging. Synthetic studies toward other C3-alkyl and C3-thioalkyl-substituted inhibitors are described and the design and synthesis of C7-monochloro- and 7??-hydroxymethyl-7??-chloro cyclobutanone derivatives is presented.

Page generated in 0.0622 seconds