211 |
Sobrecarga de sal durante o período perinatal: efeito sobre a modulação do sistema renina-angiotensina em resposta à variação no consumo de sal na prole adulta / Dietary salt load during perinatal period: effects on the reninangiotensin system in response to sodium intake in the adult offspring ratNauilo Lima Costa 09 February 2009 (has links)
O objetivo deste estudo foi avaliar se a sobrecarga de sal durante a gestação interfere na liberação de renina renal e circulante e a sua relação com a COX-2 e nNOS no rim após estimulo ou inibição do sistema renina angiotensina (SRA) nas proles femininas adultas. Ratas fêmeas Wistar receberam dieta normossódica (1,3%), hipersódica 4,0% ou hipersódica 8,0%NaCl durante a gestação. Ao nascimento, as proles receberam dieta normossódica. As proles com 12 semanas de vida foram submetidas ao teste de restrição (0,15%) ou a sobrecarga de sódio (8,0%NaCl). Foram avaliados pesos corpóreos, a pressão arterial, atividades da renina plasmática e renal; porcentagem de ramos vasculares com grânulos de renina, nitrito sérico; expressão do mRNA e protéica de renina, COX-2 e nNOS no córtex e medula renal. A pressão arterial, peso corpóreo, atividade da renina plasmática e renal não foram diferentes entre os grupos. A prole HR1 apresentou modulação do SRA, enquanto que prole HR2 não apresentou modulação adequada frente à restrição ou sobrecarga de sódio. Além disso, a expressão do mRNA da renina, COX-2 e nNOS foi estimulada na medula, e diminuída no córtex renal das proles HR1 diante da restrição ou sobrecarga de sódio. Em conclusão, a sobrecarga de sódio durante a gestação modifica as respostas do sistema renina-angiotensina, da COX-2 e da nNOS diante de subseqüente restrição e sobrecarga de sódio nas proles femininas adultas. / The objective was to evaluate whether mother high salt diet interferes in circulating and local renin release and its relation to kidney COX-2 and nNOS under RAS stimulation or inhibition by sodium in female offspring. Female rats were fed a normal (1,3%NaCl, NSD) or high 1 (4,0%, HSD1) or high 2 (8,0%, HSD2) diet throughout pregnancy. Mating occurred on the 12th week of age. From birthday, the offspring received normal salt diet. In adult offspring; plasma, renal renin activity, granulated renin cell, serum Nox, medullar and cortical renin, COX-2 and nNOS mRNA and protein expression were measured in basal condition and after one week of RAS stimulation or inhibition by sodium. Results: In basal condition, renin activity was not different among groups; however HSD1 offspring was more responsive to RAS stimulation or inhibition. Medulla COX-2 and nNOS mRNA of HSD1 offspring were decreased in basal conditions and they were more responsive to RAS stimulation or inhibition. Enhanced responses of circulating and local renin, COX-2 and nNOS to RAS stimulation or inhibition by sodium in offspring from maternal high salt diet during pregnancy lead to activation of renin angiotensin system, prostaglandin and nitric oxide pathways, and could be origin of hypertension in late life.
|
212 |
Characterisation of anandamide uptake in resting and activated murine cellsFredriksson Sundbom, Marcus January 2015 (has links)
Modifying the metabolism of the body’s own endocannabinoids is a novel approach for analgesia. Two key catabolic enzymes are fatty acid amide hydrolase (FAAH) and inflammation-inducible cyclooxygenase 2 (COX-2). The cellular uptake of the key endocannabinoid anandamide (AEA) has been found to be regulated by its FAAH-catalysed intracellular degradation, but COX-2 has not been investigated in this respect. We aimed to find out whether or not COX-2 in an in vitro inflammation setting would be able to gate AEA uptake. To achieve this, C6 cells and Raw 264.7 cells were stimulated with LPS/INF-γ and lysates then analyzed by immunoblot in order to verify COX-2 expression. AEA cellular uptake was quantified using a radioassay with [3H]-AEA. It was found that COX-2 was not inducible in C6 cells using the LPS/INF-γ conditions studied, while it was inducible in Raw 264.7 cells. AEA uptake in the COX-2-induced Raw 264.7 cells was not reduced by inhibitors of this enzyme. FAAH appeared to be down-regulated in the stimulated Raw 264.7 cells, and this was reflected in an overall lower AEA uptake. Our interpretation of the data points to FAAH as gating AEA uptake. Additional experiments are required to validate our findings by verifying significance.
|
Page generated in 0.0559 seconds