121 |
Thermal phenomena and power balance in a helicon plasmaBerisford, Daniel Floyd 06 August 2012 (has links)
This work is motivated by the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) experiment. This device uses a helicon antenna to generate a plasma inside a dielectric tube, which is radially confined and directed towards the rocket nozzle by an axial magnetic field. An ion cyclotron heating antenna further heats the ions, and a magnetic nozzle accelerates the plasma along the confining magnetic field as it leaves the rocket, ultimately allowing it to detach from the magnetic field and produce thrust. The experimental research presented here provides insight into the physical mechanisms of power flow in a helicon system by providing an overall system power balance in the form of heat flux measurements, and exploring changes in the heat fluxes in different parts of the system in response to varying operational parameters. An infrared (IR) camera measures the total heat flux into the dielectric tube surface, and axially scanned bolometer and UV photodiode probes measure the radial power loss from particles and radiation. Results from IR camera measurements on three different helicon systems are presented: the VASIMR VX-50 experiment, the VASIMR VX-CR experiment, and the University of Texas at Austin (UT) helicon experiment. These results demonstrate the development of the IR camera diagnostic for use on helicon systems of varying scale and geometry, and show reasonable agreement as to the fraction of input power lost to the dielectric tube walls. On the UT experiment, the results presented account for essentially all of the input power, providing a full system power balance. The data from all three experiments indicate that radial transport of ions to the interior wall is the dominant mechanism of power loss, with UV radiation contributing a small percentage. Additional experiments on the UT helicon explore energy and particle transport to the wall due to capacitive coupling of ions near the antenna. These experiments show clear damage to the dielectric tube surface directly under the antenna, due to physical plasma etching of the surface by bombarding ions that are accelerated into the wall by local electric fields from the antenna. / text
|
122 |
Développement de la méthode PIXE à haute énergie auprès du cyclotron ARRONAXRagheb, Diana 24 June 2014 (has links) (PDF)
PIXE, Particle Induced X-ray Emission, est une méthode d'analyse multiélémentaire, rapide, non destructive, basée sur la détection des rayons X caractéristiques émis suite à l'interaction de particules chargées avec la matière. Cette méthode est usuellement utilisée avec des protons accélérés à une énergie de l'ordre de quelques MeV dans des domaines d'applications variés, atteignant une limite de détection de l'ordre de quelques μg/g (ppm). Cependant, la profondeur d'analyse est relativement limitée. Grâce au cyclotron ARRONAX, nous pouvons utiliser des protons ou des particules alpha jusqu'à une énergie de 70 MeV pour mettre en œuvre la technique PIXE à haute énergie. Avec de telles énergies, nous excitons préférentiellement les raies X K, plus énergétiques que les raies L utilisées dans la PIXE classique pour l'analyse des éléments lourds. L'analyse d'échantillons épais, en profondeur, est ainsi accessible. Pour l'analyse des éléments légers, nous pouvons utiliser la détection de rayons gamma émis pas les noyaux excités en combinant les méthodes PIGE et PIXE. Nous allons tout d'abord présenter les caractéristiques et les principes d'analyse de la méthode PIXE à haute énergie que nous avons développée à ARRONAX. Nous détaillerons ensuite les performances atteintes, notamment en termes de limite de détection dans différentes conditions expérimentales. Enfin, nous présenterons les résultats obtenus pour l'analyse d'échantillons multicouches et la quantification d'éléments traces dans des échantillons épais.
|
123 |
Electrospray ionisation fourier transform ion cyclotron resonance and quadrupole ion trap mass spectrometry of metal-flavonoid complexesSarowar, Chowdhury Hasan, Chemistry, Faculty of Science, UNSW January 2009 (has links)
Positive-ion electrospray ionisation Fourier transform ion cyclotron resonance and ion trap mass spectrometry have been used to investigate the reactions of the flavonoids 3-hydroxyflavone, 5-hydroxyflavone, 5-methoxyflavoe, quercetin, quercitrin and rutin with monovalent Li+, Na+, K+ and Cs+, divalent Cu2+, Zn2+ and Pb2+ and trivalent La3+ and Eu3+ metal cations. The effect of capillary-skimmer potential difference and the ion residence time in the hexapole ion trap of the Fourier transform ion cyclotron resonance mass spectrometer are systematically investigated for the flavonoid-alkali and divalent metal ion experiment. It is observed that these variables impact significantly on the type of ions observed in the ESI experiments and hence the mass spectra. The binding selectivity of alkali metal ions towards 3-hydroxyflavone, 5-hydroxyflavone and 5-methoxyflavone are determined using the results from FTICR mass spectrometry experiments. The selectivity order follows the order Li+>Na+>K+ for individual flavonoids. Collision-induced dissociation experiments are carried out by Fourier transform ion cyclotron resonance and ion trap mass spectrometry to compare the fragmentation behaviour of metal-flavonoid complexes. Low energy collision-induced dissociation experiments of the [2L+M]+ for 3-hydroxyflavone, 5-hydroxyflavone and 5-methoxyflavone alkali metal complexes show the loss of ligand only. When the energy is increased only the lithiated dimer [2L+Li]+ for 5-methoxyflavone shows the loss of methyl radical along with the ligand. For quercitrin the predominant dissociation pathways are the loss of rhamnose for Li+, Na+ and K+ complexes although aglycone loss is also observed for the K+ complex. The favourable dissociation pathways for rutin are the loss of disaccharide, aglycone and rhamnose for the Na+ complex and the loss of disaccharide for the K+ complex. Collision-induced dissociation data are also used to determine the threshold dissociation energies for displacement of one flavonoid ligand from alkali metal flavonoid complexes. The threshold dissociation energies for loss of one ligand from [2L+M]+ of 5-methoxyflavone and quercitrin follow the order Li+ > Na+ > K+, rutin follows the order Na+ > K+ > Li+ , and 3-hydroxyflavone and 5-hydroxyflavone follow the order Li+ > Na+. For the same metal cation experiment, 5-methoxyflavone system has the highest dissociation energy compared to the 3-hydroxyflavone and 5-hydroxyflavone experiment. Preliminary DFT calculations show that the calculated dissociation energies follow the same trend as the experimental dissociation energies for the simple flavonoid alkali metal cation experiments. For 5-methoxyflavone-divalent metal cation (Zn2+, Cu2+ and Pb2+) complexes loss of methyl radical is the common process. CO loss is also observed for the Zn2+ complex whereas CHO and H2O losses are observed for Cu2+. For 3-hydroxyflavone and 5-hydroxyflavone divalent metal cation experiments loss of ligand is the dominant process. Zn2+ and Cu2+ complexes also show CO loss. La3+ and Er3+ with the same flavonoids show the ligand as the dominant product. For quercetin-divalent metal cation experiment, ligand loss is the dominant process. For quercitrin and rutin various dissociation products are observed where the dissociation occurs via the loss of the rhamnose and/or the disaccharide moieties. Similar dissociation patterns are also observed for La3+ and Er3+ complexes for quercitrin and rutin.
|
124 |
Cyklotronová rezonance Diracových elektronů v selenidu bismutitém / Cyclotron resonance of Dirac electrons in bismuth selenideHlavička, Ivo January 2017 (has links)
Bismuth selenide belongs to a class of topological insulators---materials characterized by a intriguing electronic band structure, with a characteristic Dirac conical band on the surface. In this master thesis, the optical response of this material is explored in the infrared spectral range and in a broad range of magnetic fields. We mainly focus on the absorption of light due to free charge carriers having, when the magnetic field is applied, a form of cyclotron resonance. We find that the experimentally observed response is consistent with expectations for massive electrons in bulk rather than massless particles on the surface.
|
125 |
Monte-Carlo simulation with FLUKA for liquid and solid targetsInfantino, A., Oehlke, E., Trinczek, M., Mostacci, D., Schaffer, P., Hoehr, C. January 2015 (has links)
Introduction
Monte-Carlo simulations can be used to assess isotope production on small medical cyclotrons. These simulations calculate the particle interactions with electric and magnetic fields, as well as the nuclear reactions. The results can be used to predict both yields and isotopic contaminations and can aid in the optimum design of target material and target geometry [1,2]. FLUKA is a general-purpose tool widely used in many applications from accelerator shielding to target design, calorimetry, activation, dosimetry, detector design, neutrino physics, or radiotherapy [3,4]. In this work, we applied the Monte-Carlo code FLUKA to determine the accuracy of predicting yields of various isotopes as compared to experimental yields.
Material and Methods
The proton beam collimation system, as well as the liquid and solid target of the TR13 cyclotron at TRIUMF, has been modeled in FLUKA. The proton beam parameters were initially taken from the cyclotron design specifications and were optimized against experimental measurements from the TR13. Data from irradiations of different targets and with different beam currents were collected in order to account for average behavior, see FIG. 1. Yields for a pencil proton beam as well as a beam spread out in direction and energy have been calculated and have been compared to experimental results obtained with the TR13.
Results and Conclusion
The reactions listed in TABLE 1 were assessed. For most reactions a good agreement was found in the comparison between experimental and simulated saturation yield. TABLE 1 only shows the yields simulated with a proton beam with a spread in both direction and energy. In most cases, the simulated yield is slightly larger or comparable. Only the calculated yield for 55Co was significantly lower by a factor of 4.2. This is still a good agreement considering that FLUKA was originally a high-energy physics code. It may indicate that the FLUKA internal cross-section calculation for this isotope production needs some optimization. In summary, we conclude that FLUKA can be used as a tool for the prediction of isotope production as well as for target design.
|
126 |
Experimental yields of PET radioisotopes from a prototype 7.8 MeV cyclotronJensen, M., Eriksson, T., Severin, G., Parnaste, M., Norling, J. January 2015 (has links)
Introduction
The worldwide use of PET has proven beyond dispute the importance for both routine diagnosis and physiological, oncological and pharmacological research. In many ways the present success of PET relies on the mature technology of PET compact medical cyclotrons. As long time developers of new targets, isotopes and com-pounds, we have been inclined to look for new block-buster applications, high power targets and sustainable ways of embracing the GMP and regional distribution, but recent pioneering development [1] around very small cyclotrons and “embedded synthesis and qc” has pointed out an old, but important nuclear physics lesson now halfway forgotten: that many PET isotopes can be made in high yields with proton energies far below 10 MeV [2]. This has opened a new interest in small cyclotrons and their targets.
We have been testing the first GE Healthcare Prototype for a 7.8 MeV negative ion, internal ion source cyclotron with 3 production targets mounted on a short beamline. Here we present the first experimental yields of some of the important PET radionuclides.
Materials and methods
The prototype cyclotron (FIG. 1) has been in-stalled and tested without self-shield in designated experimental area in order to establish the neutron field around accelerator and targets in order to qualify design calculations for a future integrated shield.
The cyclotron energy is fixed by the radial position of the extraction foil, while the azimuth determines which of the 3 targets are being irradiated. The beam energy at front of target foil was determined on several occasions: 7.8 ± 0.1 MeV by a 2 copper-foil sandwich method (adopted from [3]). The available beam inside the cyclotron at extractor position is > 50 μA, and 35 μA are easily and long term reliably extracted (> 90 %) on to any of the 3 target positions. The prototype is capable of delivering more than 40 μA to target, but target current was limited to 35 μA under present unshielded conditions.
Results 18F
We have tested the prototype gridded (> 80 % transmission) niobium body target with 10μm Havar foil using 95 % 18O water and 35 μA on target + grid with yields given in TABLE 1. The observed yields corrected for stopping in foil, grid loss and water enrichment are 75 % of theoretical. One Fastlab FDG run using 2 h irradiation yielded 16 GBq FDG EOS, confirming the “usual” 18F activity.
Results 11C
Using gridded target and a 10μm foil with 99% N2 + 1 % O2 at 10 bar followed by trapping into ascarite gave EOB activity as shown in TABLE 2.
Results 13N
We know that the 16O(p,alpha)13N cross section is a very steep function of energy around 7.8 MeV. In the hope of using the simple water target route to 13N NH3 we have measured the 13N yields (corrected for 18F contribution). It is still unclear if these yields can be improved to make useful single doses of ammonia.
Results for other isotopes
We have used solid targets to make 45Ti, 64Cu, 68Ga and 89Zr. The development of these solid targets is still in progress, but especially the 68Ga yield looks promising (3 GBq EOB after 1 h on natural Zn will give > 15 GBq on enriched 68Zn).
|
127 |
Cyclotrons Operated for Nuclear Medicine and Radiopharmacy in the German Speaking D-A-CH Countries: An Update on Current Status and TrendsZippel, Claus, Ermert, Johannes, Patt, Marianne, Gildehaus, Franz Josef, Ross, Tobias L., Reischl, Gerald, Kuwert, Torsten, Solbach, Christoph, Neumaier, Bernd, Kiss, Oliver, Mitterhauser, Markus, Wadsak, Wolfgang, Schibli, Roger, Kopka, Klaus 26 January 2024 (has links)
Background: Cyclotrons form a central infrastructure and are a resource of medical
radionuclides for the development of new radiotracers as well as the production and
supply of clinically established radiopharmaceuticals for patient care in nuclear medicine.
Aim: To provide an updated overview of the number and characteristics of cyclotrons
that are currently in use within radiopharmaceutical sciences and for the development
of radiopharmaceuticals to be used for patient care in Nuclear Medicine in Germany (D),
Austria (A) and Switzerland (CH).
Methods: Publicly available information on the cyclotron infrastructure was (i)
consolidated and updated, (ii) supplemented by selective desktop research and, last
but not least, (iii) validated by members of the committee of the academic “Working
Group Radiochemistry and Radiopharmacy” (AGRR), consisting of radiochemists and
radiopharmacists of the D-A-CH countries and belonging to the German Society of
Nuclear Medicine (DGN), as well as the Radiopharmaceuticals Committee of the DGN.
Results: In total, 42 cyclotrons were identified that are currently being operated for
medical radionuclide production for imaging and therapy in Nuclear Medicine clinics,
32 of them in Germany, 4 in Austria and 6 in Switzerland. Two thirds of the cyclotrons
reported (67%) are operated by universities, university hospitals or research institutions
close to a university hospital, less by/in cooperation with industrial partners (29%) or a
non-academic clinic/ PET-center (5%). Most of the cyclotrons (88%) are running with up to 18 MeV proton beams, which is sufficient for the production of the currently most
common cyclotron-based radionuclides for PET imaging.
Discussion: The data presented provide an academically-updated overview of the
medical cyclotrons operated for the production of radiopharmaceuticals and their use
in Nuclear Medicine in the D-A-CH countries. In this context, we discuss current
developments and trends with a view to the cyclotron infrastructure in these countries,
with a specific focus on organizational aspects.
|
128 |
Structure and reactivity of dissolved organic matter as determined by ultra-high resulution electrospray ionization mass spectrometryKim, Sunghwan 07 November 2003 (has links)
No description available.
|
129 |
The organic geochemistry of charcoal black carbon in the soils of the University of Michigan biological stationHockaday, William C. 13 March 2006 (has links)
No description available.
|
130 |
Ion cyclotron resonance heating in toroidal plasmasHedin, Johan January 2000 (has links)
<p>NR 20140805</p>
|
Page generated in 0.0315 seconds