• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Content-based audio search: from fingerprinting to semantic audio retrieval

Cano Vila, Pedro 27 April 2007 (has links)
Aquesta tesi tracta de cercadors d'audio basats en contingut. Específicament, tracta de desenvolupar tecnologies que permetin fer més estret l'interval semàntic o --semantic gap' que, a avui dia, limita l'ús massiu de motors de cerca basats en contingut. Els motors de cerca d'àudio fan servir metadades, en la gran majoria generada per editors, per a gestionar col.leccions d'àudio. Tot i ser una tasca àrdua i procliu a errors, l'anotació manual és la pràctica més habitual. Els mètodes basats en contingut àudio, és a dir, aquells algorismes que extreuen automàticament etiquetes descriptives de fitxers d'àudio, no són generalment suficientment madurs per a permetre una interacció semàntica. En la gran majoria, els mètodes basats en contingut treballen amb descriptors de baix nivell, mentre que els descriptors d'alt nivell estan més enllà de les possibilitats actuals. En la tesi explorem mètodes, que considerem pas previs per a atacar l'interval semàntic. / This dissertation is about audio content-based search. Specifically, it is on developing technologies for bridging the semantic gap that currently prevents wide-deployment of audio content-based search engines.Audio search engines rely on metadata, mostly human generated, to manage collections of audio assets.Even though time-consuming and error-prone, human labeling is a common practice.Audio content-based methods, algorithms that automatically extract description from audio files, are generally not mature enough to provide a user friendly representation for interacting with audio content. Mostly, content-based methods are based on low-level descriptions, while high-level or semantic descriptions are beyond current capabilities. In this thesis we explore technologies that can help close the semantic gap.
2

Expressivity-aware tempo transformations of music performances using case based reasoning

Grachten, Maarten 05 November 2006 (has links)
La recerca presentada en aquesta dissertació glossa sobre transformacions de tempo de gravacions monofòniques de saxo jazz preservant l'expressivitat musical. Es una contribució al processament d'audio basat en el contingut, un camp de recerca que ha emergit recentment com a resposta a la necessitat creixent de gestionar intel·ligentment la creixent quantitat d'informació digital multimedia disponible actualment. S'ha investigat com una execució musical, tocada a un tempo concret, es pot reproduir automàticament a un altre tempo mantenint l'expressivitat. Aquest problema no es pot reduir a aplicar una transformació uniforme a totes les notes de la melodia, operació que degradaria la qualitat de l'execució. Proposem un sistema de raonament basat en casos per a transformacions de tempo preservant l'expressivitat. La validació del sistema mostra un comportament superior a la transformació uniforme. A m'es, s'han fet contribucions a l'anàlisi de gravacions expressives, CBR, recuperació de melodies i metodologires d'evaluació de models d'expressivitat. / The research presented in this dissertation focuses on expressivity-aware tempo transformations of monophonic audio recordings of saxophone jazz performances. It is a contribution to content-based audio processing, a field of technology that has recently emerged as an answer to the increased need to deal intelligently with the evergrowing amount of digital multimedia information available nowadays. We have investigated the problem of how a musical performance played at a particular tempo can be rendered automatically at another tempo, while preserving naturally sounding expressivity. This problem cannot be reduced to just applying a uniform transformation to all notes of the melody, since it often degrades the musical quality of the performance. We present a case-based reasoning system for expressivity aware tempo transformations. A validation of the system showed superior results compared to uniform transformation. Furthermore, contributions have been made to expressive performance analysis, CBR, melody retrieval, and evaluation methodologies of expressive models.
3

Apprentissage de représentations musicales à l'aide d'architectures profondes et multiéchelles

Hamel, Philippe 05 1900 (has links)
L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés. / Machine learning (ML) is an important tool in the field of music information retrieval (MIR). Many MIR tasks can be solved by training a classifier over a set of features. For MIR tasks based on music audio, it is possible to extract features from the audio with signal processing techniques. However, some musical aspects are hard to extract with simple heuristics. To obtain richer features, we can use ML to learn a representation from the audio. These learned features can often improve performance for a given MIR task. In order to learn interesting musical representations, it is important to consider the particular aspects of music audio when building learning models. Given the temporal and spectral structure of music audio, deep and multi-scale representations are particularly well suited to represent music. This thesis focuses on learning representations from music audio. Deep and multi-scale models that improve the state-of-the-art for tasks such as instrument recognition, genre recognition and automatic annotation are presented.
4

Apprentissage de représentations musicales à l'aide d'architectures profondes et multiéchelles

Hamel, Philippe 05 1900 (has links)
L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés. / Machine learning (ML) is an important tool in the field of music information retrieval (MIR). Many MIR tasks can be solved by training a classifier over a set of features. For MIR tasks based on music audio, it is possible to extract features from the audio with signal processing techniques. However, some musical aspects are hard to extract with simple heuristics. To obtain richer features, we can use ML to learn a representation from the audio. These learned features can often improve performance for a given MIR task. In order to learn interesting musical representations, it is important to consider the particular aspects of music audio when building learning models. Given the temporal and spectral structure of music audio, deep and multi-scale representations are particularly well suited to represent music. This thesis focuses on learning representations from music audio. Deep and multi-scale models that improve the state-of-the-art for tasks such as instrument recognition, genre recognition and automatic annotation are presented.

Page generated in 0.0498 seconds