1 |
INFLUENCE DES ORIENTATIONS CRISTALLINES SUR LA LOCALISATION EN BANDE DE CISAILLEMENT DANS DES ALLIAGES Al-Mg SOUMIS A COMPRESSION PLANEChapelle, David 18 December 2002 (has links) (PDF)
L'objet de l'étude est d'appréhender le rôle des orientations cristallines sur l'apparition de la localisation en bandes de cisaillement lorsqu'elle se forme au sein du grain puis lorsqu'elle franchit le joint de grains. La démarche expérimentale s'appuie sur l'exploitation de techniques aujourd'hui classiques –toutefois le couplage l'est moins-, simulation du laminage par channel-die, acquisition d'orientations cristallines par EBSD et mesure de la déformation locale par corrélation d'images sur microgrilles (Bornert [1996]). Sur le plan théorique, la localisation est introduite sous forme de bifurcation, perte d'unicité de la solution, (Hill [1962], Rice [1976]) dans un cristal c.f.c. rigide plastique, se déformant par glissement simple sur les plans de haute densité atomique suivant la loi de Schmid, et dans le cadre de l'hypothèse de Taylor. La cinématique du monocristal est écrite avec le formalisme des grandes transformations (Sidoroff [1982]) sous forme d'une loi constitutive incrémentale linéaire par morceaux. Le bon accord entre observation et modélisation est nettement marqué et deux modes de localisation en bande de cisaillement prédominent : l'un par combinaison de deux systèmes coplanaires, l'autre par combinaison de deux systèmes codirectionnels. Par ailleurs, des phénomènes de germination ont été mis en évidence dans les bandes, signe d'un échauffement dû à de grandes vitesses de glissement.
|
2 |
Analyse des tolérances des systèmes complexes – Modélisation des imperfections de fabrication pour une analyse réaliste et robuste du comportement des systèmes / Tolerance analysis of complex mechanisms - Manufacturing imperfections modeling for a realistic and robust geometrical behavior modeling of the mechanismsGoka, Edoh 12 June 2019 (has links)
L’analyse des tolérances a pour but de vérifier lors de la phase de conception, l’impact des tolérances individuelles sur l’assemblage et la fonctionnalité d’un système mécanique. Les produits fabriqués possèdent différents types de contacts et sont sujets à des imperfections de fabrication qui sont sources de défaillances d’assemblage et fonctionnelle. Les méthodes généralement proposées pour l’analyse des tolérances ne considèrent pas les défauts de forme. L’objectif des travaux de thèse est de proposer une nouvelle procédure d’analyse des tolérances permettant de prendre en compte les défauts de forme et le comportement géométriques des différents types de contacts. Ainsi, dans un premier temps, une méthode de modélisation des défauts de forme est proposée afin de rendre les simulations plus réalistes. Dans un second temps, ces défauts de forme sont intégrés dans la modélisation du comportement géométrique d’un système mécanique hyperstatique, en considérant les différents types de contacts. En effet, le comportement géométrique des différents types de contacts est différent dès que les défauts de forme sont considérés. La simulation de Monte Carlo associée à une technique d’optimisation est la méthode choisie afin de réaliser l’analyse des tolérances. Cependant, cette méthode est très couteuse en temps de calcul. Pour pallier ce problème, une approche utilisant des modèles probabilistes obtenus grâce à l’estimation par noyaux, est proposée. Cette nouvelle approche permet de réduire les temps de calcul de manière significative. / Tolerance analysis aims toward the verification of the impact of individual tolerances on the assembly and functional requirements of a mechanical system. The manufactured products have several types of contacts and their geometry is imperfect, which may lead to non-functioning and non-assembly. Traditional methods for tolerance analysis do not consider the form defects. This thesis aims to propose a new procedure for tolerance analysis which considers the form defects and the different types of contact in its geometrical behavior modeling. A method is firstly proposed to model the form defects to make realistic analysis. Thereafter, form defects are integrated in the geometrical behavior modeling of a mechanical system and by considering also the different types of contacts. Indeed, these different contacts behave differently once the imperfections are considered. The Monte Carlo simulation coupled with an optimization technique is chosen as the method to perform the tolerance analysis. Nonetheless, this method is subject to excessive numerical efforts. To overcome this problem, probabilistic models using the Kernel Density Estimation method are proposed.
|
3 |
Réaction d'une mousse monodisperse 2D soumise à une déformation cycliqueGuene, Elhadji Mama 04 June 2010 (has links) (PDF)
Cette thèse a pour objet d'étudier la rhéologie des mousses 2D. Des mousses monodisperses sont soumises à une déformation cyclique localisée en régime quasistatique. Un dispositif expérimental sollicite la mousse par gonflage et dégonflage d'une bulle centrale (BC) et suit l'évolution de la pression de la BC au cours du temps. Au gonflage, les expériences ont montré que BC choisit une direction d'ouverture privilégiée. L'analyse de sa forme montre un régime isotrope où la bulle est ronde puis un régime anisotrope où la bulle est de forme pointue de direction aléatoire. Les expériences ont montré que, durant les deux premiers cycles, des changements topologiques (T1) se produisent partout dans la mousse. Après ce régime transitoire, les T1 se produisent uniquement à proximité de la BC de façon ordonnée et réversible. Dans ce régime, après chaque cycle, l'énergie de la mousse est identique. Donc toute l'énergie injectée est dissipée par les T1. Le calcul de l'énergie injectée a permis d'en déduire l'énergie moyenne dissipée par un T1. Enfin, une analyse plus fine montre que le T1 a un effet sur les autres bulles de la mousse. Pour cela nous avons calculé, lors d'un T1, les fluctuations de pression des bulles par le logiciel Surface Evolver ainsi que leurs déplacements. L'analyse montre une réponse quadripolaire de la mousse au T1. L'influence de la distance au T1 a montré une atténuation des sauts de pression. Cette atténuation se rapproche à la fois d'une loi de puissance ou d'une exponentielle, sans que l'on ait pu discriminer les deux comportements. Le meilleur ajustement exponentiel donne une longueur d'écrantage de 2 diamètres de bulles quelle que soit la taille de la mousse.
|
4 |
Sculpture virtuelle par système de particules / Virtual sculpture using particles systemHelbling, Marc 25 November 2010 (has links)
La 3D s'impose comme un nouveau média dont l'adoption généralisée passe par la conception d'outils, accessibles au grand public, de création et de manipulation de formes tridimensionnelles quelconques. Les outils actuels reposent fortement sur la modélisation sous-jacente des formes, généralement surfacique, et sont alors peu intuitifs ou limitatifs dans l'expressivité offerte à l'utilisateur.Nous souhaitons, dans ces travaux, définir une approche ne présentant pas ces défauts et permettant à l'utilisateur de se concentrer sur le processus créatif. En nous inspirant de l'utilisation séculaire de l'argile, nous proposons une approche modélisant la matière sous forme lagrangienne.Une forme est ainsi décrite par un système de particules, où chaque particule représente un petit volume du volume global.Dans ce cadre lagrangien, la méthode Smoothed Particle Hydrodynamics (SPH) permet l'approximation de grandeurs physiques en tout point de l'espace. Nous proposons alors une modélisation de matériaux à deux couches, l'une décrivant la topologie et l'autre décrivant la géométrie du système global.La méthode SPH permet, entre autres, d'évaluer la densité de matière. Ceci nous permet de définir une surface implicite basée sur les propriétés physiques du système de particules pour redonner un aspect continu à la matière.Ces matériaux peuvent alors être manipulés au moyen d'interactions locales reproduisant le maniement de la pâte à modeler, et de déformations globales. L'intérêt de notre approche est démontrée par plusieurs prototypes fonctionnant sur des stations de travail standard ou dans des environnements immersifs. / 3D is emerging as a new media. Its widespread adoption requires the implementation of userfriendly tools to create and manipulate three-dimensional shapes. Current softwares heavily rely on underlying shape modeling, usually a surfacic one, and are then often counter-intuitive orlimiting. Our objective is the design of an approach alleviating those limitations and allowing the user to only focus on the process of creating forms. Drawing inspiration from the ancient use of clay,we propose to model a material in a lagrangian description. A shape is described by a particles system, where each particle represents a small fraction of the total volume of the shape. In this framework, the Smoothed Particle Hydrodynamics method enables to approximate physical values anywhere in space. Relying on this method, we propose a modeling of material with two levels, one level representing the topology and the other one describing local geometry of the shape.The SPH method especially enables to evaluate a density of matter. We use this property todefine an implicit surface based on the physical properties of the particles system to reproduce the continuous aspect of matter. Those virtual materials can then be manipulated locally through interactions reproducing the handling of dough in the real world or through global shape deformation. Our approach is demonstrated by several prototypes running either on typical desktop workstation or in immersive environment system.
|
Page generated in 0.1187 seconds