• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'information changeant au cours du temps / Analysis of stationary and emerging properties in information flows changing over time

Kassab, Randa 11 May 2009 (has links)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps. L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples. / Many applications produce and receive continuous, unlimited, and high-speed data streams. This raises obvious problems of storage, treatment and analysis of data, which are only just beginning to be treated in the domain of data streams. On the one hand, it is a question of treating data streams on the fly without having to memorize all the data. On the other hand, it is also a question of analyzing, in a simultaneous and concurrent manner, the regularities inherent in the data stream as well as the novelties, exceptions, or changes occurring in this stream over time. The main contribution of this thesis concerns the development of a new machine learning approach - called ILoNDF - which is based on novelty detection principle. The learning of this model is, contrary to that of its former self, driven not only by the novelty part in the input data but also by the data itself. Thereby, ILoNDF can continuously extract new knowledge relating to the relative frequencies of the data and their variables. This makes it more robust against noise. Being operated in an on-line mode without repeated training, ILoNDF can further address the primary challenges for managing data streams. Firstly, we focus on the study of ILoNDF's behavior for one-class classification when dealing with high-dimensional noisy data. This study enabled us to highlight the pure learning capacities of ILoNDF with respect to the key classification methods suggested until now. Next, we are particularly involved in the adaptation of ILoNDF to the specific context of information filtering. Our goal is to set up user-oriented filtering strategies rather than system-oriented in following two types of directions. The first direction concerns user modeling relying on the model ILoNDF. This provides a new way of looking at user's need in terms of specificity, exhaustivity and contradictory profile-contributing criteria. These criteria go on to estimate the relative importance the user might attach to precision and recall. The filtering threshold can then be adjusted taking into account this knowledge about user's need. The second direction, complementary to the first one, concerns the refinement of ILoNDF's functionality in order to confer it the capacity of tracking drifting user's need over time. Finally, we consider the generalization of our previous work to the case where streaming data can be divided into multiple classes.
2

An approach for online learning in the presence of concept changes / Une approche pour l'apprentissage en-ligne en présence de changements de concept.

Jaber, Ghazal 18 October 2013 (has links)
De nombreuses applications de flux de données ont vu le jour au cours des dernières années. Lorsque l'environnement évolue, il est nécessaire de s'appuyer sur un apprentissage en ligne pouvant s'adapter aux conditions changeantes, alias dérives de concept. L'adaptation aux dérives de concept implique d'oublier une partie ou la totalité des connaissances acquises lorsque le concept change, tout en accumulant des connaissances sur le concept sous-jacent supposé stationnaire. Ce compromis est appelé le dilemme stabilité-plasticité.Les méthodes d'ensemble ont été parmi les approches les plus réussies. Cependant, la gestion de l'ensemble qui détermine les informations à oublier n'a pas été complètement étudiée jusqu'ici. Notre travail montre l'importance de la stratégie de l'oubli en comparant plusieurs approches. Les résultats ainsi obtenus nous amènent à proposer une nouvelle méthode d'ensemble avec une stratégie d'oubli conçue pour s'adapter aux dérives de concept. Des évaluations empiriques montrent que notre méthode se compare favorablement aux systèmes adaptatifs de l'état de l'art.Les majorité des anciens travaux réalisés se sont focalisés sur la détection des changements de concept, ainsi que les méthodes permettant d'adapter le système d'apprentissage aux changements. Dans ce travail, nous allons plus loin en introduisant un mécanisme d'anticipation capable de détecter des états pertinents de l'environnement, de reconnaître les contextes récurrents et d'anticiper les changements de concept susceptibles.Par conséquent, la méthode que nous proposons traite à la fois le défi d'optimiser le dilemme stabilité-plasticité, l'anticipation et la reconnaissance des futurs concepts. Ceci est accompli grâce à une méthode d'ensemble qui contrôle un comité d'apprenants. D'une part, la gestion de l'ensemble permet de s'adapter naturellement à la dynamique des changements de concept avec peu de paramètres à régler. D'autre part, un mécanisme d'apprentissage surveillant les changements dans l'ensemble fournit des moyens pour anticiper la modification sous-jacente du contexte. / Learning from data streams is emerging as an important application area. When the environment changes, it is necessary to rely on on-line learning with the capability to adapt to changing conditions a.k.a. concept drifts. Adapting to concept drifts entails forgetting some or all of the old acquired knowledge when the concept changes while accumulating knowledge regarding the supposedly stationary underlying concept. This tradeoff is called the stability-plasticity dilemma. Ensemble methods have been among the most successful approaches. However, the management of the ensemble which ultimately controls how past data is forgotten has not been thoroughly investigated so far. Our work shows the importance of the forgetting strategy by comparing several approaches. The results thus obtained lead us to propose a new ensemble method with an enhanced forgetting strategy to adapt to concept drifts. Experimental comparisons show that our method compares favorably with the well-known state-of-the-art systems. The majority of previous works focused only on means to detect changes and to adapt to them. In our work, we go one step further by introducing a meta-learning mechanism that is able to detect relevant states of the environment, to recognize recurring contexts and to anticipate likely concepts changes. Hence, the method we suggest, deals with both the challenge of optimizing the stability-plasticity dilemma and with the anticipation and recognition of incoming concepts. This is accomplished through an ensemble method that controls a ensemble of incremental learners. The management of the ensemble of learners enables one to naturally adapt to the dynamics of the concept changes with very few parameters to set, while a learning mechanism managing the changes in the ensemble provides means for the anticipation of, and the quick adaptation to, the underlying modification of the context.
3

Fast and slow machine learning / Apprentissage automatique rapide et lent

Montiel López, Jacob 07 March 2019 (has links)
L'ère du Big Data a révolutionné la manière dont les données sont créées et traitées. Dans ce contexte, de nombreux défis se posent, compte tenu de la quantité énorme de données disponibles qui doivent être efficacement gérées et traitées afin d’extraire des connaissances. Cette thèse explore la symbiose de l'apprentissage en mode batch et en flux, traditionnellement considérés dans la littérature comme antagonistes, sur le problème de la classification à partir de flux de données en évolution. L'apprentissage en mode batch est une approche bien établie basée sur une séquence finie: d'abord les données sont collectées, puis les modèles prédictifs sont créés, finalement le modèle est appliqué. Par contre, l’apprentissage par flux considère les données comme infinies, rendant le problème d’apprentissage comme une tâche continue (sans fin). De plus, les flux de données peuvent évoluer dans le temps, ce qui signifie que la relation entre les caractéristiques et la réponse correspondante peut changer. Nous proposons un cadre systématique pour prévoir le surendettement, un problème du monde réel ayant des implications importantes dans la société moderne. Les deux versions du mécanisme d'alerte précoce (batch et flux) surpassent les performances de base de la solution mise en œuvre par le Groupe BPCE, la deuxième institution bancaire en France. De plus, nous introduisons une méthode d'imputation évolutive basée sur un modèle pour les données manquantes dans la classification. Cette méthode présente le problème d'imputation sous la forme d'un ensemble de tâches de classification / régression résolues progressivement.Nous présentons un cadre unifié qui sert de plate-forme d'apprentissage commune où les méthodes de traitement par batch et par flux peuvent interagir de manière positive. Nous montrons que les méthodes batch peuvent être efficacement formées sur le réglage du flux dans des conditions spécifiques. Nous proposons également une adaptation de l'Extreme Gradient Boosting algorithme aux flux de données en évolution. La méthode adaptative proposée génère et met à jour l'ensemble de manière incrémentielle à l'aide de mini-lots de données. Enfin, nous présentons scikit-multiflow, un framework open source en Python qui comble le vide en Python pour une plate-forme de développement/recherche pour l'apprentissage à partir de flux de données en évolution. / The Big Data era has revolutionized the way in which data is created and processed. In this context, multiple challenges arise given the massive amount of data that needs to be efficiently handled and processed in order to extract knowledge. This thesis explores the symbiosis of batch and stream learning, which are traditionally considered in the literature as antagonists. We focus on the problem of classification from evolving data streams.Batch learning is a well-established approach in machine learning based on a finite sequence: first data is collected, then predictive models are created, then the model is applied. On the other hand, stream learning considers data as infinite, rendering the learning problem as a continuous (never-ending) task. Furthermore, data streams can evolve over time, meaning that the relationship between features and the corresponding response (class in classification) can change.We propose a systematic framework to predict over-indebtedness, a real-world problem with significant implications in modern society. The two versions of the early warning mechanism (batch and stream) outperform the baseline performance of the solution implemented by the Groupe BPCE, the second largest banking institution in France. Additionally, we introduce a scalable model-based imputation method for missing data in classification. This method casts the imputation problem as a set of classification/regression tasks which are solved incrementally.We present a unified framework that serves as a common learning platform where batch and stream methods can positively interact. We show that batch methods can be efficiently trained on the stream setting under specific conditions. The proposed hybrid solution works under the positive interactions between batch and stream methods. We also propose an adaptation of the Extreme Gradient Boosting (XGBoost) algorithm for evolving data streams. The proposed adaptive method generates and updates the ensemble incrementally using mini-batches of data. Finally, we introduce scikit-multiflow, an open source framework in Python that fills the gap in Python for a development/research platform for learning from evolving data streams.
4

Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'informations changeant au cours du temps

Kassab, Randa 11 May 2009 (has links) (PDF)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps.<br /><br />L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. <br /><br />Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples.

Page generated in 0.0676 seconds