• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'information changeant au cours du temps / Analysis of stationary and emerging properties in information flows changing over time

Kassab, Randa 11 May 2009 (has links)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps. L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples. / Many applications produce and receive continuous, unlimited, and high-speed data streams. This raises obvious problems of storage, treatment and analysis of data, which are only just beginning to be treated in the domain of data streams. On the one hand, it is a question of treating data streams on the fly without having to memorize all the data. On the other hand, it is also a question of analyzing, in a simultaneous and concurrent manner, the regularities inherent in the data stream as well as the novelties, exceptions, or changes occurring in this stream over time. The main contribution of this thesis concerns the development of a new machine learning approach - called ILoNDF - which is based on novelty detection principle. The learning of this model is, contrary to that of its former self, driven not only by the novelty part in the input data but also by the data itself. Thereby, ILoNDF can continuously extract new knowledge relating to the relative frequencies of the data and their variables. This makes it more robust against noise. Being operated in an on-line mode without repeated training, ILoNDF can further address the primary challenges for managing data streams. Firstly, we focus on the study of ILoNDF's behavior for one-class classification when dealing with high-dimensional noisy data. This study enabled us to highlight the pure learning capacities of ILoNDF with respect to the key classification methods suggested until now. Next, we are particularly involved in the adaptation of ILoNDF to the specific context of information filtering. Our goal is to set up user-oriented filtering strategies rather than system-oriented in following two types of directions. The first direction concerns user modeling relying on the model ILoNDF. This provides a new way of looking at user's need in terms of specificity, exhaustivity and contradictory profile-contributing criteria. These criteria go on to estimate the relative importance the user might attach to precision and recall. The filtering threshold can then be adjusted taking into account this knowledge about user's need. The second direction, complementary to the first one, concerns the refinement of ILoNDF's functionality in order to confer it the capacity of tracking drifting user's need over time. Finally, we consider the generalization of our previous work to the case where streaming data can be divided into multiple classes.
2

Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'informations changeant au cours du temps

Kassab, Randa 11 May 2009 (has links) (PDF)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps.<br /><br />L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. <br /><br />Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples.
3

Détection de nouveauté pour le monitoring vibratoire des structures de génie civil : Approches chaotique et statistique de l'extraction d'indicateurs

Clément, Antoine 21 November 2011 (has links) (PDF)
Le suivi vibratoire de l'état des ouvrages de génie civil vise à anticiper une défaillance structurale par la détection précoce d'endommagement. Dans ce contexte, la détection de nouveauté constitue une approche particulièrement adaptée à l'analyse des signaux compte tenu des difficultés à modéliser une structure unique et soumise à de nombreux facteurs extérieurs influant sur la dynamique vibratoire. Une telle approche présente un double intérêt consistant à éviter de formuler des hypothèses a priori sur le comportement dynamique et à intégrer tous les facteurs de variabilité. Ce travail de thèse poursuit ainsi deux objectifs. Le premier objectif consiste à observer dans quelle mesure la détection de nouveauté parvient à détecter un endommagement dans un contexte fortement perturbé par des variations environnementales d'une part, et par une excitation de nature impulsionnelle, d'autre part. Le deuxième objectif est de proposer et d'étudier un nouvel indicateur vectoriel, désigné par JFV (pour Jacobian Feature Vector). Le calcul du JFV s'appuie sur la reconstruction de la trajectoire du système dynamique observé dans son espace des phases. Cette approche exploite les développements scientifiques récents réalisés en théorie des systèmes dynamiques non linéaires, parfois qualifiée de théorie du chaos. Le JFV est comparé aux coefficients de modèles auto-régressifs (AR), couramment utilisés en analyse des séries temporelles. Pour réaliser ce travail de thèse, plusieurs cas d'études expérimentaux sont utilisés dont notamment une maquette de structure en bois sur laquelle l'excitation est contrôlée et des variations environnementales sévères sont imposées. \indent Les indicateurs AR et JFV sont extraits des signaux vibratoires relatifs aux différents cas d'études et normalisés par le biais du concept de distance de Mahalanobis. Les résultats expérimentaux montrent que, pour les deux indicateurs vectoriels, la détection de l'endommagement est favorisée par une sollicitation comportant une composante de bruit. Une excitation purement instationnaire, constituée de séquences aléatoires d'impulsions, dégrade de façon significative les performances de détection. Les variations environnementales génèrent une forte variabilité des indicateurs, rendant difficile l'ajustement d'un modèle statistique robuste dédié à la discrimination des dégradations. Seuls les niveaux d'endommagement extrêmes sont repérés dans la configuration d'essai la plus pénalisante. L'analyse comparée des coefficients AR et du JFV met en évidence une dispersion beaucoup plus grande des composantes de ce dernier, conduisant à une sensibilité plus faible. Une étude paramétrique montre cependant que la sensibilité du JFV peut être améliorée par une optimisation des méthodes de sélection des paramètres de reconstruction de l'espace des phases. Face aux performances limitées des indicateurs AR et JFV dans certains cas très défavorables, un autre indicateur est proposé, basé sur la corrélation croisée des informations portées par une paire de capteurs. Cet indicateur présente une performance intéressante sur un cas d'étude complexe combinant variations environnementales fortes et sollicitation purement instationnaire. Une discussion est également proposée sur la façon de répartir les mesures de référence dans les différentes bases de données nécessaires à l'application de la démarche de détection de nouveauté. Enfin, différentes approches de modélisation statistique des indicateurs normalisés sont mises en oeuvre dans le but de comparer leurs aptitudes respectives à la définition d'un seuil de classification robuste.

Page generated in 0.1049 seconds