• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constance de largeur et désocclusion dans les images digitales

Villéger, Emmanuel 06 December 2005 (has links) (PDF)
L'école Gestaltiste s'intéresse à la vision, leur point de vue est que<br />nous regroupons des points lumineux et/ou des objets selon certaines<br />règles pour former des objets plus gros, des Gestalts.<br /><br />La première partie de cette thèse est consacrée à la constance de<br />largeur. La Gestalt constance de largeur regroupe des points situés<br />entre deux bords qui restent parallèles. Nous cherchons donc dans les<br />images des courbes ``parallèles.'' Nous voulons faire une détection<br />a contrario, nous proposons donc une quantification du ``non<br />parallélisme'' de deux courbes par trois méthodes. La première méthode<br />utilise un modèle de génération de courbes régulières et nous<br />calculons une probabilité. La deuxième méthode est une méthode de<br />simulation de type Monte-Carlo pour estimer cette probabilité. Enfin<br />la troisième méthode correspond à un développement limité de la<br />première en faisant tendre un paramètre vers 0 sous certaines<br />contraintes. Ceci conduit à une équation aux dérivées partielles<br />(EDP). Parmi ces trois méthodes la méthode de type Monte-Carlo est<br />plus robuste et plus rapide.<br /><br />L'EDP obtenue est très similaire à celles utilisées pour la<br />désocclusion d'images. C'est pourquoi dans la deuxième partie de cette<br />thèse nous nous intéressons au problème de la désocclusion. Nous<br />présentons les méthodes existantes puis une nouvelle méthode basée sur<br />un système de deux EDPs dont l'une est inspirée de celle de la<br />première partie. Nous introduisons la probabilité de l'orientation du<br />gradient de l'image. Nous prenons ainsi en compte l'incertitude sur<br />l'orientation calculée du gradient de l'image. Cette incertitude est<br />quantifiée en relation avec la norme du gradient.<br /><br />Avec la quantification du non parallélisme de deux courbes, l'étape<br />suivante est la détection de la constance de largeur dans<br />les images. Il faut alors définir un seuil pour sélectionner les<br />bonnes réponses du détecteur et surtout parmi les réponses définir<br />des réponses ``maximales.'' Le système d'EDPs pour<br />la désocclusion dépend de beaucoup de paramètres, il faut trouver une<br />méthode de calibration des paramètres pour obtenir de bons résultats<br />adaptés à chaque image.
2

Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse rapide de textures / Random phase fields and Gaussian fields for image sharpness assessment and fast texture synthesis

Leclaire, Arthur 26 June 2015 (has links)
Dans cette thèse, on étudie la structuration des phases de la transformée de Fourier d'images naturelles, ce qui, du point de vue applicatif, débouche sur plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthèse de texture par l'exemple. Le Chapitre 2 présente dans un cadre unifié plusieurs modèles de champs aléatoires, notamment les champs spot noise et champs gaussiens, en prêtant une attention particulière aux représentations fréquentielles de ces champs aléatoires. Le Chapitre 3 détaille l'utilisation des champs à phase aléatoire à la synthèse de textures peu structurées (microtextures). On montre qu'une microtexture peut être résumée en une image de petite taille s'intégrant à un algorithme de synthèse très rapide et flexible via le modèle spot noise. Aussi on propose un algorithme de désocclusion de zones texturales uniformes basé sur la simulation gaussienne conditionnelle. Le Chapitre 4 présente trois mesures de cohérence globale des phases de la transformée de Fourier. Après une étude théorique et pratique établissant leur lien avec la netteté d'image, on propose un algorithme de déflouage aveugle basé sur l'optimisation stochastique de ces indices. Enfin, dans le Chapitre 5, après une discussion sur l'analyse et la synthèse directe de l'information de phase, on propose deux modèles de textures à phases cohérentes qui permettent la synthèse de textures plus structurées tout en conservant quelques garanties mathématiques simples. / This thesis deals with the Fourier phase structure of natural images, and addresses no-reference sharpness assessment and fast texture synthesis by example. In Chapter 2, we present several models of random fields in a unified framework, like the spot noise model and the Gaussian model, with particular attention to the spectral representation of these random fields. In Chapter 3, random phase models are used to perform by-example synthesis of microtextures (textures with no salient features). We show that a microtexture can be summarized by a small image that can be used for fast and flexible synthesis based on the spot noise model. Besides, we address microtexture inpainting through the use of Gaussian conditional simulation. In Chapter 4, we present three measures of the global Fourier phase coherence. Their link with the image sharpness is established based on a theoretical and practical study. We then derive a stochastic optimization scheme for these indices, which leads to a blind deblurring algorithm. Finally, in Chapter 5, after discussing the possibility of direct phase analysis or synthesis, we propose two non random phase texture models which allow for synthesis of more structured textures and still have simple mathematical guarantees.
3

Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse rapide de textures / Random phase fields and Gaussian fields for image sharpness assessment and fast texture synthesis

Leclaire, Arthur 26 June 2015 (has links)
Dans cette thèse, on étudie la structuration des phases de la transformée de Fourier d'images naturelles, ce qui, du point de vue applicatif, débouche sur plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthèse de texture par l'exemple. Le Chapitre 2 présente dans un cadre unifié plusieurs modèles de champs aléatoires, notamment les champs spot noise et champs gaussiens, en prêtant une attention particulière aux représentations fréquentielles de ces champs aléatoires. Le Chapitre 3 détaille l'utilisation des champs à phase aléatoire à la synthèse de textures peu structurées (microtextures). On montre qu'une microtexture peut être résumée en une image de petite taille s'intégrant à un algorithme de synthèse très rapide et flexible via le modèle spot noise. Aussi on propose un algorithme de désocclusion de zones texturales uniformes basé sur la simulation gaussienne conditionnelle. Le Chapitre 4 présente trois mesures de cohérence globale des phases de la transformée de Fourier. Après une étude théorique et pratique établissant leur lien avec la netteté d'image, on propose un algorithme de déflouage aveugle basé sur l'optimisation stochastique de ces indices. Enfin, dans le Chapitre 5, après une discussion sur l'analyse et la synthèse directe de l'information de phase, on propose deux modèles de textures à phases cohérentes qui permettent la synthèse de textures plus structurées tout en conservant quelques garanties mathématiques simples. / This thesis deals with the Fourier phase structure of natural images, and addresses no-reference sharpness assessment and fast texture synthesis by example. In Chapter 2, we present several models of random fields in a unified framework, like the spot noise model and the Gaussian model, with particular attention to the spectral representation of these random fields. In Chapter 3, random phase models are used to perform by-example synthesis of microtextures (textures with no salient features). We show that a microtexture can be summarized by a small image that can be used for fast and flexible synthesis based on the spot noise model. Besides, we address microtexture inpainting through the use of Gaussian conditional simulation. In Chapter 4, we present three measures of the global Fourier phase coherence. Their link with the image sharpness is established based on a theoretical and practical study. We then derive a stochastic optimization scheme for these indices, which leads to a blind deblurring algorithm. Finally, in Chapter 5, after discussing the possibility of direct phase analysis or synthesis, we propose two non random phase texture models which allow for synthesis of more structured textures and still have simple mathematical guarantees.
4

Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse rapide de textures / Random phase fields and Gaussian fields for image sharpness assessment and fast texture synthesis

Leclaire, Arthur 26 June 2015 (has links)
Dans cette thèse, on étudie la structuration des phases de la transformée de Fourier d'images naturelles, ce qui, du point de vue applicatif, débouche sur plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthèse de texture par l'exemple. Le Chapitre 2 présente dans un cadre unifié plusieurs modèles de champs aléatoires, notamment les champs spot noise et champs gaussiens, en prêtant une attention particulière aux représentations fréquentielles de ces champs aléatoires. Le Chapitre 3 détaille l'utilisation des champs à phase aléatoire à la synthèse de textures peu structurées (microtextures). On montre qu'une microtexture peut être résumée en une image de petite taille s'intégrant à un algorithme de synthèse très rapide et flexible via le modèle spot noise. Aussi on propose un algorithme de désocclusion de zones texturales uniformes basé sur la simulation gaussienne conditionnelle. Le Chapitre 4 présente trois mesures de cohérence globale des phases de la transformée de Fourier. Après une étude théorique et pratique établissant leur lien avec la netteté d'image, on propose un algorithme de déflouage aveugle basé sur l'optimisation stochastique de ces indices. Enfin, dans le Chapitre 5, après une discussion sur l'analyse et la synthèse directe de l'information de phase, on propose deux modèles de textures à phases cohérentes qui permettent la synthèse de textures plus structurées tout en conservant quelques garanties mathématiques simples. / This thesis deals with the Fourier phase structure of natural images, and addresses no-reference sharpness assessment and fast texture synthesis by example. In Chapter 2, we present several models of random fields in a unified framework, like the spot noise model and the Gaussian model, with particular attention to the spectral representation of these random fields. In Chapter 3, random phase models are used to perform by-example synthesis of microtextures (textures with no salient features). We show that a microtexture can be summarized by a small image that can be used for fast and flexible synthesis based on the spot noise model. Besides, we address microtexture inpainting through the use of Gaussian conditional simulation. In Chapter 4, we present three measures of the global Fourier phase coherence. Their link with the image sharpness is established based on a theoretical and practical study. We then derive a stochastic optimization scheme for these indices, which leads to a blind deblurring algorithm. Finally, in Chapter 5, after discussing the possibility of direct phase analysis or synthesis, we propose two non random phase texture models which allow for synthesis of more structured textures and still have simple mathematical guarantees.

Page generated in 0.3866 seconds