Spelling suggestions: "subject:"développement d'edgeworth"" "subject:"développement d'edgeworths""
1 |
Theoremes limites pour les fonctionnelles du periodogrammeFay, Gilles 28 January 2000 (has links) (PDF)
Le périodogramme est un outil naturel pour l'analyse spectrale d'une série temporelle stationnaire au second ordre. La littérature sur les séries temporelles en donne grand nombre de propriétés - principalement asymptotiques -, que le signal soit a dependence courte ou longue. Beaucoup de ces resultats font l'hypothese supplementaire de gaussianite. La principale contribution de ce travail est l'extension de nombreux resultats connus aux signaux non-gaussiens. Nous traiterons le periodogramme de l'i.i.d. et donnerons une expression asymptotique de ses moments a tout ordre. Nous montrerons que l'on peut traiter le cas plus général du signal linéaire selon deux méthodes. Soit en s'appuyant sur le résultat précédent et la decomposition de Bartlett, soit en traitant directement le periodogramme du lineaire par developpement asymptotique (developement d'Edgeworth) de sa distribution. La premiere methode conduit a des resultats de type "limite centrale" sur une large classe de tableaux triangulaires de fonctionnelles non-lineaire du periodogramme, alors que la seconde permet des resultats de consistance.
|
2 |
Comportement d'un échantillon sous conditionnement extrême, maximum de vraisemblance sous échantillonnage pondéréCao, Zhansheng 26 November 2012 (has links) (PDF)
Dans le Chapitre 1, nous explorons le comportement joint des variables d'une marche aléatoire (X1, . . . ,Xn) lorsque leur valeur moyenne tend vers l'infini quand n tend vers l'infini. Il est prouvé que toutes ces variables doivent partager la même valeur, ce qui généralise les résultats précédents, dans le cadre de grands dépassements de sommes finies de i.i.d variables aléatoires. Dans le Chapitre 2, nous montrons un théorème de Gibbs conditionnel pour une marche aléatoire (X1, ..,Xn) conditionnée à une déviation extrême. Il est prouvé que lorsque les opérandes ont des queues légères avec une certaine régularité supplémentaire, la distribution asymptotique conditionnelle de X1 peut être approximée par la distribution tiltée en norme de la variation totale, généralisant ainsi le cas classique du LDP. Le troisième Chapitre explore le principe du maximum de vraisemblance dans les modèles paramétriques, dans le contexte du théorème de grandes déviations de Sanov. Le MLE est associé à la minimisation d'un critère spécifique de type divergence, qui se généralise au cas du bootstrap pondéré, où la divergnce est fonction de la distribution des poids. Certaines propriétés de la procédure résultante d'inférence sont présenteés ; l'efficacité de Bahadur de tests est également examinée dans ce contexte.
|
Page generated in 0.2471 seconds