• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 13
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

EXPLORING ECOSYSTEMS IN INDIANA’S EDUCATION AND WORKFORCE DEVELOPMENT USING A DATA VISUALIZATION DASHBOARD

Yash S Gugale (8800853) 05 May 2020 (has links)
<div>Large datasets related to Indiana’s Education and Workforce development are used by various demographics such as stakeholders and decision makers in education and government, parents, teachers and employees of various companies to find trends and patterns in the data to better guide decision-making through statistical analysis. However, most of this data is scattered, textual and available in the form of excel sheets which makes it harder to look at the data from different perspectives, drill down and roll up the data and find trends and patterns in the data. Such data representation does not take into account the inherent characteristics of the user which can affect how well the user understands, perceives and interprets the data.</div><div>Information dashboards used to view and navigate between visualizations of different datasets, provide a coherent, central access to all data, and make it easy to view different aspects of the system. The purpose of this research is to create a new data visualization dashboard for visualizing education and workforce data and find which design principles are applicable while designing such a dashboard for the target demographic in the education and workforce domain. This study also aims at assessing how the introduction of such a data dashboard affects the work processes and decision making of stakeholders involved in education and workforce development in the state of Indiana.</div><div>User studies consisting of usability testing and semi-structured interviews with the stakeholders in education and workforce development in the state of Indiana is conducted to test the effectiveness of the dashboard. Finally, this research proposes how a regional map-based dashboard can be used as an effective method to design a data dashboard for education and workforce data for other states and other domains as well.</div>
22

Dynamic Clustering and Visualization of Smart Data via D3-3D-LSA / with Applications for QuantNet 2.0 and GitHub

Borke, Lukas 08 September 2017 (has links)
Mit der wachsenden Popularität von GitHub, dem größten Online-Anbieter von Programm-Quellcode und der größten Kollaborationsplattform der Welt, hat es sich zu einer Big-Data-Ressource entfaltet, die eine Vielfalt von Open-Source-Repositorien (OSR) anbietet. Gegenwärtig gibt es auf GitHub mehr als eine Million Organisationen, darunter solche wie Google, Facebook, Twitter, Yahoo, CRAN, RStudio, D3, Plotly und viele mehr. GitHub verfügt über eine umfassende REST API, die es Forschern ermöglicht, wertvolle Informationen über die Entwicklungszyklen von Software und Forschung abzurufen. Unsere Arbeit verfolgt zwei Hauptziele: (I) ein automatisches OSR-Kategorisierungssystem für Data Science Teams und Softwareentwickler zu ermöglichen, das Entdeckbarkeit, Technologietransfer und Koexistenz fördert. (II) Visuelle Daten-Exploration und thematisch strukturierte Navigation innerhalb von GitHub-Organisationen für reproduzierbare Kooperationsforschung und Web-Applikationen zu etablieren. Um Mehrwert aus Big Data zu generieren, ist die Speicherung und Verarbeitung der Datensemantik und Metadaten essenziell. Ferner ist die Wahl eines geeigneten Text Mining (TM) Modells von Bedeutung. Die dynamische Kalibrierung der Metadaten-Konfigurationen, TM Modelle (VSM, GVSM, LSA), Clustering-Methoden und Clustering-Qualitätsindizes wird als "Smart Clusterization" abgekürzt. Data-Driven Documents (D3) und Three.js (3D) sind JavaScript-Bibliotheken, um dynamische, interaktive Datenvisualisierung zu erzeugen. Beide Techniken erlauben Visuelles Data Mining (VDM) in Webbrowsern, und werden als D3-3D abgekürzt. Latent Semantic Analysis (LSA) misst semantische Information durch Kontingenzanalyse des Textkorpus. Ihre Eigenschaften und Anwendbarkeit für Big-Data-Analytik werden demonstriert. "Smart clusterization", kombiniert mit den dynamischen VDM-Möglichkeiten von D3-3D, wird unter dem Begriff "Dynamic Clustering and Visualization of Smart Data via D3-3D-LSA" zusammengefasst. / With the growing popularity of GitHub, the largest host of source code and collaboration platform in the world, it has evolved to a Big Data resource offering a variety of Open Source repositories (OSR). At present, there are more than one million organizations on GitHub, among them Google, Facebook, Twitter, Yahoo, CRAN, RStudio, D3, Plotly and many more. GitHub provides an extensive REST API, which enables scientists to retrieve valuable information about the software and research development life cycles. Our research pursues two main objectives: (I) provide an automatic OSR categorization system for data science teams and software developers promoting discoverability, technology transfer and coexistence; (II) establish visual data exploration and topic driven navigation of GitHub organizations for collaborative reproducible research and web deployment. To transform Big Data into value, in other words into Smart Data, storing and processing of the data semantics and metadata is essential. Further, the choice of an adequate text mining (TM) model is important. The dynamic calibration of metadata configurations, TM models (VSM, GVSM, LSA), clustering methods and clustering quality indices will be shortened as "smart clusterization". Data-Driven Documents (D3) and Three.js (3D) are JavaScript libraries for producing dynamic, interactive data visualizations, featuring hardware acceleration for rendering complex 2D or 3D computer animations of large data sets. Both techniques enable visual data mining (VDM) in web browsers, and will be abbreviated as D3-3D. Latent Semantic Analysis (LSA) measures semantic information through co-occurrence analysis in the text corpus. Its properties and applicability for Big Data analytics will be demonstrated. "Smart clusterization" combined with the dynamic VDM capabilities of D3-3D will be summarized under the term "Dynamic Clustering and Visualization of Smart Data via D3-3D-LSA".

Page generated in 0.0485 seconds