• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Essays in panel data and financial econometrics

Pakel, Cavit January 2012 (has links)
This thesis is concerned with volatility estimation using financial panels and bias-reduction in non-linear dynamic panels in the presence of dependence. Traditional GARCH-type volatility models require large time-series for accurate estimation. This makes it impossible to analyse some interesting datasets which do not have a large enough history of observations. This study contributes to the literature by introducing the GARCH Panel model, which exploits both time-series and cross-section information, in order to make up for this lack of time-series variation. It is shown that this approach leads to gains both in- and out-of-sample, but suffers from the well-known incidental parameter issue and therefore, cannot deal with short data either. As a response, a bias-correction approach valid for a general variety of models beyond GARCH is proposed. This extends the analytical bias-reduction literature to cross-section dependence and is a theoretical contribution to the panel data literature. In the final chapter, these two contributions are combined in order to develop a new approach to volatility estimation in short panels. Simulation analysis reveals that this approach is capable of removing a substantial portion of the bias even when only 150-200 observations are available. This is in stark contrast with the standard methods which require 1,000-1,500 observations for accurate estimation. This approach is used to model monthly hedge fund volatility, which is another novel contribution, as it has hitherto been impossible to analyse hedge fund volatility, due to their typically short histories. The analysis reveals that hedge funds exhibit variation in their volatility characteristics both across and within investment strategies. Moreover, the sample distributions of fund volatilities are asymmetric, have large right tails and react to major economic events such as the recent credit crunch episode.
2

Data Bias in Rate Transient Analysis of Shale Gas Wells

Agnia, Ammar Khalifa Mohammed 2012 May 1900 (has links)
Superposition time functions offer one of the effective ways of handling variable-rate data. However, they can also be biased and misleading the engineer to the wrong diagnosis and eventually to the wrong analysis. Since the superposition time functions involve rate as essential constituent, the superposition time is affected greatly with rate issues. Production data of shale gas wells are usually subjected to operating issues that yield noise and outliers. Whenever the rate data is noisy or contains outliers, it will be hard to distinguish their effects from common regime if the superposition time functions are used as plotting time function on log-log plots. Such deceiving presence of these flow regimes will define erroneous well and reservoir parameters. Based on these results and with the upsurge of energy needs there might be some costly decisions will be taken such as refracting or re-stimulating the well especially in tight formations. In this work, a simple technique is presented in order to rapidly check whether there is data bias on the superposition-time specialized plots or not. The technique is based on evaluating the kernel of the superposition time function of each flow regime for the maximum production time. Whatever beyond the Kernel-Equivalent Maximum Production Time (KEMPT) it is considered as biased data. The hypothesis of this technique is that there is no way to see in the reservoir more than what has been seen. A workflow involving different diagnostic and filtering techniques has been proposed to verify proposed notion. Different synthetic and field examples were used in this study. Once the all problematic issues have been detected and filtered out, it was clear that whatever went beyond the KEMPT is a consequence of these issues. Thus, the proposed KEMPT technique can be relied on in order to detect and filter out the biased data points on superposition-time log-log plots. Both raw and filtered data were analyzed using type-curve matching of linear flow type-curves for calculating the original gas in-place (OGIP). It has been found that biased data yield noticeable reduced OGIP. Such reduction is attributed to the early fictitious onset of boundary dominated flow, where early false detection of the drainage boundaries defines less gas in-place occupied in these boundaries.
3

Limitations in Global Information on Species Occurrences

Meyer, Carsten 13 May 2015 (has links)
Detaillierte Informationen über die Verbreitungsareale von Arten sind essentiell für die Beantwortung zentraler Fragen der Ökologie, Evolutionsbiologie und Biogeographie. Solche Informationen sind auch notwendig, um Naturschutzressourcen kostenwirksam zwischen verschiedenen Regionen und Maßnahmen zu verteilen. Unser Wissen über Artverbreitungen beruht vor allem auf Punktdaten, die das Vorkommen einer bestimmten Art an einem bestimmten Ort zu einem bestimmten Zeitpunkt belegen (nachstehend „Records“). Riesige Mengen solcher Records wurden über internationale Data-Sharing-Netzwerke mobilisiert, allen voran durch die Global Biodiversity Information Facility (GBIF). Auch wenn diese Netzwerke die Zugänglichkeit zu solchen Informationen enorm verbessert haben, ist unser Wissen über globale Artverbreitungen immer noch äußerst lückenhaft und von grober räumlicher Auflösung – der sogenannte Wallace’sche Wissensrückstand. Vorhandene Informationen enthalten zudem zahlreiche Unsicherheiten, Fehler und Daten-‘Biases’. Diese könnten durch Ort-spezifische Faktoren wie Zugänglichkeit oder durch artspezifische Faktoren, wie Entdeckungswahrscheinlichkeit, verursacht werden. Zukünftiges Sammeln und Mobilisieren von Informationen sollte so gestaltet werden, dass der erreichte Nutzen der Records für Forschung und Naturschutz maximiert wird. Hierfür ist ein tiefgehendes Verständnis der Lücken, Unsicherheiten und Biases in den Informationen sowie der sie verursachenden Faktoren notwendig. Bisher wurden diese Mängel in globalen Artverbreitungsinformationen niemals quantitativ untersucht. Mit meiner Dissertation liefere ich die ersten globalen Analysen zu Mängeln von digital verfügbaren Verbreitungsinformationen für terrestrische Wirbeltiere und Landpflanzen. Ich habe >300 Millionen Records für Landpflanzen und drei Gruppen terrestrischer Wirbeltiere (Amphibien, Säugetiere, Vögel) über GBIF abgerufen. Diese Informationen habe ich mit taxonomischen Datenbanken sowie unabhängigen Verbreitungskarten und Checklisten verbunden. Auf Grundlage der erstellten Datensätze habe ich unterschiedliche Formen von Informations-Mängeln für verschiedene taxonomische Gruppen und auf mehreren räumlichen Maßstäben untersucht. In Kapitel I habe Daten-Abdeckung sowie Daten-Unsicherheiten in Informationen zu Pflanzenvorkommen jeweils in Bezug auf Taxonomie, Raum und Zeit quantifiziert. Für diese insgesamt 6 Maße habe in anschließend Variation in den drei Dimensionen (Taxonomie, Raum, Zeit) gemessen. Zudem habe ich mithilfe von paarweisen Spearman-Rang-Korrelationen und Hauptkomponentenanalysen die Zusammenhänge zwischen diesen verschiedenen Formen von Informationsmängeln analysiert. In Kapitel II habe ich anhand von terrestrischen Wirbeltieren zwei spezielle Aspekte von Datenabdeckung zwischen geographischen Regionen verglichen: i) die Datendichte und ii) die Vollständigkeit der abgedeckten Arten. Durch Multi-Modell-Analysen habe ich die Effekte von zwölf potentiellen sozioökonomischen Einflussfaktoren auf Informationsmängel verglichen, und zwar einzeln für jede der drei Wirbeltiergruppen auf jeder von vier verschiedenen räumlichen Auflösungen. In Kapitel III habe ich anhand von Säugetieren drei Aspekte von Datenabdeckung zwischen einzelnen Arten verglichen: i) die Anzahl von Records pro Art, ii) die räumliche Abdeckung der Verbreitungsareale durch Records, und iii) den räumlichen Bias in der Abdeckung verschiedener Teile der Verbreitungsareale. Durch Multi-Modell-Analysen und Variations-Partitionierung habe ich die Effekte von verschiedenen Artmerkmalen, Größe und Form der Verbreitungsareale sowie von sozioökonomischen Faktoren untersucht. Diese Analysen habe ich auf globalem Maßstab sowie einzeln für sechs zoogeographische Gebiete durchgeführt. In meiner Dissertation habe ich in allen untersuchten Aspekten von Artverbreitungsinformationen starke Biases gefunden. Die Anzahl von Records variierte um mehrere Größenordnungen zwischen Arten und zwischen geographischen Gebieten. Verschiedene Maße von Datenabdeckung und Datenunsicherheiten zeigten klare taxonomische, geographische und zeitliche Muster. Ich fand beispielsweise Höchstwerte von taxonomischer Abdeckung in industrialisierten westlichen Ländern, aber auch in einigen tropischen Gebieten wie Mexiko. Im Gegensatz dazu gab es in weiten Teilen Afrikas und Asiens entweder gar keine oder nur sehr veraltete Informationen. Da taxonomische, räumliche und zeitliche Abdeckung jeweils durch die Anzahl der Records numerisch eingeschränkt sind, fand ich zwischen diesen Maßen gemäßigte bis starke positive Korrelationen. Maße von Datenunsicherheiten hingegen korrelierten kaum untereinander oder mit Datenabdeckungsmaßen. In Kapitel II habe ich den Einfluss von zwölf potentiellen sozioökonomischen Einflussfaktoren auf Datendichte und Datenvollständigkeit von geographischen Artgemeinschaften untersucht. Nur vier hatten einen durchweg für alle untersuchten Wirbeltiergruppen und räumlichen Auflösungen starken Einfluss. Dies waren der Endemitenreichtum, die räumliche Nähe zu Daten-beisteuernden Institutionen, politische Mitgliedschaft im GBIF-Netzwerk, sowie lokal verfügbare Forschungsgelder. Andere Faktoren, von denen man oft annimmt, dass sie eine große Rolle spielen würden, hatten einen erstaunlich geringen Einfluss, wie z.B. Verkehrsinfrastruktur oder Größe und Finanzausstattungen westlicher Daten-beisteuernder Institutionen. Meine Analysen in Kapitel III ergaben, dass die vier in Kapitel II identifizierten sozioökonomischen Schlüsselfaktoren ebenfalls einen starken Einfluss auf Artverbreitungsinformationen auf der Ebene von einzelnen Arten hatten. Jedoch unterschied sich ihre relative Wichtigkeit deutlich zwischen geographischen Gebieten. Zwischenartliche Unterschiede in Verbreitungsinformationen waren zudem sehr stark durch Größe und Form der Verbreitungsareale beeinflusst. Dies unterstützt meine Hypothese, dass diese geometrischen Faktoren die Wahrscheinlichkeit beeinflussen, dass sich Verbreitungsgebiete bestimmter Arten mit Untersuchungsgebieten von Feldforschern überschneiden, was wiederum Aufswirkungen auf die Wahrscheinlichkeiten hat, mit denen diese Arten besammelt werden. Entgegen unserer Annahmen hatten Artmerkmale wie etwa Nachtaktivität, die das Entdecken oder Sammeln bestimmter Arten wahrscheinlich machen sollten, kaum einen Einfluss auf zwischenartliche Unterschiede in Verbreitungsinformationen. Die Ergebnisse meiner Dissertation lassen wichtige Schlussfolgerungen darüber zu, wie mobilisierte Artverbreitungsinformationen effizient genutzt und verbessert werden können. Erstens belegen meine Ergebnisse schwerwiegende Mängel in digital verfügbaren Artverbreitungsinformationen, insbesondere für Gebiete und Arten von besonderer Wichtigkeit für den Naturschutz. Zweitens zeigen sie, dass für die allermeisten Arten feiner aufgelöste Informationen nur durch Artverbreitungsmodelle erreicht werden können, die mit geringen Datenmengen auskommen, die starke Datenunsicherheiten und Biases innehaben. Eine vielversprechende Methode, um in solchen Modellen mit Biases umzugeben, ist das explizite Einbeziehen der Bias-verursachenden Faktoren in die Modelle, und meine Ergebnisse bieten hilfreiche Anhaltspunkte für die Auswahl relevanter Faktoren. Drittens schaffen meine Ergebnisse eine empirische Grundlage zur Überwachung von Fortschritten in der Verbesserung weltweiter Artverbreitungsinformationen. Schließlich schafft mein Identifizieren der global wichtigsten Informations-limitierenden Faktoren sowie das Unterscheiden verschiedener Informationsaspekte eine Grundlage dafür, um Aktivitäten zu identifizieren, die Datenmängel effektiv beheben können. Als wichtigste Aktivitäten empfehle ich unter anderem i) das Unterstützen von Bemühungen zur Datenmobilisierung in Institutionen, die in geographischer Nähe zu datenarmen Gebieten liegen, ii) das Fördern von Kooperation zwischen großen Schwellenländern und Data-Sharing-Netzwerken, iii) die Durchführung von neuen Biodiversitäts-Surveys im zentralen Afrika und südlichen Asien, um weitgehend veraltete Informationen zu aktualisieren, und iv) das Verschieben des Fokus von Datensammel- und Datenmobilisierungsbemühungen auf Asien sowie Arten mit begrenzten Verbreitungsarealen.

Page generated in 0.0715 seconds