• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 270
  • 52
  • 27
  • 25
  • 19
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 481
  • 481
  • 355
  • 335
  • 188
  • 99
  • 65
  • 64
  • 58
  • 53
  • 53
  • 52
  • 49
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Méthodes probabilistes pour la planifcation réactive de mouvement

Jaillet, Léonard 19 December 2005 (has links) (PDF)
Malgré le franc succès des techniques de planification de mouvement au cours de ces deux dernières décennies, leur adaptation à des scènes comprenant à la fois des obstacles statiques et des obstacles mobiles s'est avérée limitée jusqu'ici. Une des raisons en est le coût associé à la mise à jour des structures de données précalculées afin de capturer la connexité de l'espace libre. Notre contribution principale concerne la proposition d'un nouveau planificateur capable de traiter ces problèmes d'environnements partiellement dynamiques composés à la fois d'obstacles statiques et d'obstacles mobiles.
292

Effective techniques for understanding and improving data structure usage

Jung, Changhee 20 September 2013 (has links)
Turing Award winner Niklaus Wirth famously noted, `Algorithms + Data Structures = Programs', and it follows that data structures should be carefully considered for effective application development. In fact, data structures are the main focus of program understanding, performance engineering, bug detection, and security enhancement, etc. Our research is aimed at providing effective techniques for analyzing and improving data structure usage in fundamentally new approaches: First, detecting data structures; identifying what data structures are used within an application is a critical step toward application understanding and performance engineering. Second, selecting efficient data structures; analyzing data structures' behavior can recognize improper use of data structures and suggest alternative data structures better suited for the current situation where the application runs. Third, detecting memory leaks for data structures; tracking data accesses with little overhead and their careful analysis can enable practical and accurate memory leak detection. Finally, offloading time-consuming data structure operations; By leveraging a dedicated helper thread that executes the operations on the behalf of the application thread, we can improve the overall performance of the application.
293

Adaptive Bounding Volume Hierarchies for Efficient Collision Queries

Larsson, Thomas January 2009 (has links)
The need for efficient interference detection frequently arises in computer graphics, robotics, virtual prototyping, surgery simulation, computer games, and visualization. To prevent bodies passing directly through each other, the simulation system must be able to track touching or intersecting geometric primitives. In interactive simulations, in which millions of geometric primitives may be involved, highly efficient collision detection algorithms are necessary. For these reasons, new adaptive collision detection algorithms for rigid and different types of deformable polygon meshes are proposed in this thesis. The solutions are based on adaptive bounding volume hierarchies. For deformable body simulation, different refit and reconstruction schemes to efficiently update the hierarchies as the models deform are presented. These methods permit the models to change their entire shape at every time step of the simulation. The types of deformable models considered are (i) polygon meshes that are deformed by arbitrary vertex repositioning, but with the mesh topology preserved, (ii) models deformed by linear morphing of a fixed number of reference meshes, and (iii) models undergoing completely unstructured relative motion among the geometric primitives. For rigid body simulation, a novel type of bounding volume, the slab cut ball, is introduced, which improves the culling efficiency of the data structure significantly at a low storage cost. Furthermore, a solution for even tighter fitting heterogeneous hierarchies is outlined, including novel intersection tests between spheres and boxes as well as ellipsoids and boxes. The results from the practical experiments indicate that significant speedups can be achieved by using these new methods for collision queries as well as for ray shooting in complex deforming scenes.
294

Algorithmes, mots et textes aléatoires

Clément, Julien 12 December 2011 (has links) (PDF)
Dans ce mémoire, j'examine différents aspects d'un objet simple mais omniprésent en informatique: la séquence de symboles (appelée selon le contexte mot ou chaîne de caractères). La notion de mot est au carrefour de domaines comme la théorie de l'information et la théorie des langages. S'il est simple, il reste fondamental: nous n'avons, au plus bas niveau, que cela à disposition puisqu'il arrive toujours un moment où une donnée doit être encodée en symboles stockables en mémoire. La quantité d'information croissante de données mise à disposition et qu'on peut stocker, par exemple des génomes d'individus ou des documents numérisés, justifie que les algorithmes et les structures de données qui les manipulent soient optimisés. En conséquence, les besoins d'analyse se font sentir pour guider le choix et la conception des programmes qui manipulent ces données. L'analyse en moyenne est ici particulièrement adaptée puisque les données atteignent une variété et des volumes tellement importants que c'est le cas typique qui traduit le mieux la complexité et non pas le cas le pire. Cela évidemment pose le problème de la modélisation de données qui reste encore très épineux. En effet on souhaite deux choses contradictoires: un modèle au plus près des données, qui traduise vraiment leurs spécificités, mais aussi un modèle permettant de donner des résultats, c'est-à-dire de prédire les performances (et on comprend vite que le modèle doit donc rester relativement simple pour qu'il subsiste un espoir de le traiter!). Les méthodes sont le plus souvent celles de la combinatoire analytique et font appel à un objet mathématique, les séries génératrices, pour mener les analyses à bien.
295

Storage and aggregation for fast analytics systems

Amur, Hrishikesh 13 January 2014 (has links)
Computing in the last decade has been characterized by the rise of data- intensive scalable computing (DISC) systems. In particular, recent years have wit- nessed a rapid growth in the popularity of fast analytics systems. These systems exemplify a trend where queries that previously involved batch-processing (e.g., run- ning a MapReduce job) on a massive amount of data, are increasingly expected to be answered in near real-time with low latency. This dissertation addresses the problem that existing designs for various components used in the software stack for DISC sys- tems do not meet the requirements demanded by fast analytics applications. In this work, we focus specifically on two components: 1. Key-value storage: Recent work has focused primarily on supporting reads with high throughput and low latency. However, fast analytics applications require that new data entering the system (e.g., new web-pages crawled, currently trend- ing topics) be quickly made available to queries and analysis codes. This means that along with supporting reads efficiently, these systems must also support writes with high throughput, which current systems fail to do. In the first part of this work, we solve this problem by proposing a new key-value storage system – called the WriteBuffer (WB) Tree – that provides up to 30× higher write per- formance and similar read performance compared to current high-performance systems. 2. GroupBy-Aggregate: Fast analytics systems require support for fast, incre- mental aggregation of data for with low-latency access to results. Existing techniques are memory-inefficient and do not support incremental aggregation efficiently when aggregate data overflows to disk. In the second part of this dis- sertation, we propose a new data structure called the Compressed Buffer Tree (CBT) to implement memory-efficient in-memory aggregation. We also show how the WB Tree can be modified to support efficient disk-based aggregation.
296

Designing multi-sensory displays for abstract data

Nesbitt, Keith January 2003 (has links)
Doctor of Philosophy / The rapid increase in available information has lead to many attempts to automatically locate patterns in large, abstract, multi-attributed information spaces. These techniques are often called data mining and have met with varying degrees of success. An alternative approach to automatic pattern detection is to keep the user in the exploration loop by developing displays for perceptual data mining. This approach allows a domain expert to search the data for useful relationships and can be effective when automated rules are hard to define. However, designing models of the abstract data and defining appropriate displays are critical tasks in building a useful system. Designing displays of abstract data is especially difficult when multi-sensory interaction is considered. New technology, such as Virtual Environments, enables such multi-sensory interaction. For example, interfaces can be designed that immerse the user in a 3D space and provide visual, auditory and haptic (tactile) feedback. It has been a goal of Virtual Environments to use multi-sensory interaction in an attempt to increase the human-to-computer bandwidth. This approach may assist the user to understand large information spaces and find patterns in them. However, while the motivation is simple enough, actually designing appropriate mappings between the abstract information and the human sensory channels is quite difficult. Designing intuitive multi-sensory displays of abstract data is complex and needs to carefully consider human perceptual capabilities, yet we interact with the real world everyday in a multi-sensory way. Metaphors can describe mappings between the natural world and an abstract information space. This thesis develops a division of the multi-sensory design space called the MS-Taxonomy. The MS-Taxonomy provides a concept map of the design space based on temporal, spatial and direct metaphors. The detailed concepts within the taxonomy allow for discussion of low level design issues. Furthermore the concepts abstract to higher levels, allowing general design issues to be compared and discussed across the different senses. The MS-Taxonomy provides a categorisation of multi-sensory design options. However, to design effective multi-sensory displays requires more than a thorough understanding of design options. It is also useful to have guidelines to follow, and a process to describe the design steps. This thesis uses the structure of the MS-Taxonomy to develop the MS-Guidelines and the MS-Process. The MS-Guidelines capture design recommendations and the problems associated with different design choices. The MS-Process integrates the MS-Guidelines into a methodology for developing and evaluating multi-sensory displays. A detailed case study is used to validate the MS-Taxonomy, the MS-Guidelines and the MS-Process. The case study explores the design of multi-sensory displays within a domain where users wish to explore abstract data for patterns. This area is called Technical Analysis and involves the interpretation of patterns in stock market data. Following the MS-Process and using the MS-Guidelines some new multi-sensory displays are designed for pattern detection in stock market data. The outcome from the case study includes some novel haptic-visual and auditory-visual designs that are prototyped and evaluated.
297

Designing multi-sensory displays for abstract data

Nesbitt, Keith January 2003 (has links)
Doctor of Philosophy / The rapid increase in available information has lead to many attempts to automatically locate patterns in large, abstract, multi-attributed information spaces. These techniques are often called data mining and have met with varying degrees of success. An alternative approach to automatic pattern detection is to keep the user in the exploration loop by developing displays for perceptual data mining. This approach allows a domain expert to search the data for useful relationships and can be effective when automated rules are hard to define. However, designing models of the abstract data and defining appropriate displays are critical tasks in building a useful system. Designing displays of abstract data is especially difficult when multi-sensory interaction is considered. New technology, such as Virtual Environments, enables such multi-sensory interaction. For example, interfaces can be designed that immerse the user in a 3D space and provide visual, auditory and haptic (tactile) feedback. It has been a goal of Virtual Environments to use multi-sensory interaction in an attempt to increase the human-to-computer bandwidth. This approach may assist the user to understand large information spaces and find patterns in them. However, while the motivation is simple enough, actually designing appropriate mappings between the abstract information and the human sensory channels is quite difficult. Designing intuitive multi-sensory displays of abstract data is complex and needs to carefully consider human perceptual capabilities, yet we interact with the real world everyday in a multi-sensory way. Metaphors can describe mappings between the natural world and an abstract information space. This thesis develops a division of the multi-sensory design space called the MS-Taxonomy. The MS-Taxonomy provides a concept map of the design space based on temporal, spatial and direct metaphors. The detailed concepts within the taxonomy allow for discussion of low level design issues. Furthermore the concepts abstract to higher levels, allowing general design issues to be compared and discussed across the different senses. The MS-Taxonomy provides a categorisation of multi-sensory design options. However, to design effective multi-sensory displays requires more than a thorough understanding of design options. It is also useful to have guidelines to follow, and a process to describe the design steps. This thesis uses the structure of the MS-Taxonomy to develop the MS-Guidelines and the MS-Process. The MS-Guidelines capture design recommendations and the problems associated with different design choices. The MS-Process integrates the MS-Guidelines into a methodology for developing and evaluating multi-sensory displays. A detailed case study is used to validate the MS-Taxonomy, the MS-Guidelines and the MS-Process. The case study explores the design of multi-sensory displays within a domain where users wish to explore abstract data for patterns. This area is called Technical Analysis and involves the interpretation of patterns in stock market data. Following the MS-Process and using the MS-Guidelines some new multi-sensory displays are designed for pattern detection in stock market data. The outcome from the case study includes some novel haptic-visual and auditory-visual designs that are prototyped and evaluated.
298

Constituents and their expectation towards a critical-pragmatic theory of information systems project management /

Brook, Phillip William James. January 2004 (has links)
Thesis (Ph.D.) -- University of Western Sydney, 2004. / "Submitted as fulfilling the requirements for the Doctor of Philosophy Degree"-- t.p. "March 2004" Includes bibliographic references.
299

Designing multi-sensory displays for abstract data

Nesbitt, Keith V. January 2003 (has links)
Thesis (Ph. D.)--University of Sydney, 2003. / Title from title screen (viewed April 6, 2009). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Information Technologies, Faculty of Science. Includes bibliographical references. Also available in print form.
300

OntoSELF+TQ a topology query system for OntoSELF /

Pei, Zhisong. January 2009 (has links)
Thesis (M.C.S.)--Miami University, Dept. of Computer Science and Systems Analysis, 2009. / Title from first page of PDF document. Includes bibliographical references (p. 122-123).

Page generated in 0.0725 seconds