• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 197
  • 53
  • 21
  • 19
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 379
  • 379
  • 96
  • 67
  • 66
  • 64
  • 58
  • 51
  • 50
  • 38
  • 37
  • 37
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Cooperative perception : Application in the context of outdoor intelligent vehicle systems

Li, Hao 21 September 2012 (has links) (PDF)
The research theme of this dissertation is the multiple-vehicles cooperative perception (or cooperative perception) applied in the context of intelligent vehicle systems. The general methodology of the presented works in this dissertation is to realize multiple-intelligent vehicles cooperative perception, which aims at providing better vehicle perception result compared with single vehicle perception (or non-cooperative perception). Instead of focusing our research works on the absolute performance of cooperative perception, we focus on the general mechanisms which enable the realization of cooperative localization and cooperative mapping (and moving objects detection), considering that localization and mapping are two underlying tasks for an intelligent vehicle system. We also exploit the possibility to realize certain augmented reality effect with the help of basic cooperative perception functionalities; we name this kind of practice as cooperative augmented reality. Naturally, the contributions of the presented works consist in three aspects: cooperative localization, cooperative local mapping and moving objects detection, and cooperative augmented reality.
122

Processing and analysis of NMR data : Impurity determination and metabolic profiling

Forshed, Jenny January 2005 (has links)
This thesis describes the use of nuclear magnetic resonance (NMR) spectrometry as an analytical tool. The theory of NMR spectroscopy in general and quantitative NMR spectrometry (qNMR) in particular is described and the instrumental properties and parameter setups for qNMR measurements are discussed. Examples of qNMR are presented by impurity determination of pharmaceutical compounds and analysis of urine samples from rats fed with either water or a drug (metabolic profiling). The instrumental parameter setup of qNMR and traditional data pre-treatments are examined. Spectral smoothing by convolution with a triangular function, which is an unusual application in this context, was shown to be successful regarding the sensitivity and robustness of the method in paper II. In addition, papers III and IV comprise the field of peak alignment, especially designed for 1H-NMR spectra of urine samples. This is an important preprocessing tool when multivariate analysis is to be applied. A novel peak alignment method was developed and compared to the traditional bucketing approach and a conceptually different alignment method. Univariate, multivariate, linear and nonlinear data analyses were applied to qNMR data. In papers I–II, calibration models were created to examine the potential of qNMR for these applications. The data analysis in papers III–VI was mainly explorative. The potential of data fusion and data correlation was examined in order to increase the possibilities of analysing the highly complex samples from metabolic profiling (papers V–VI). Data from LC/MS analysis of the same samples were used with the 1H-NMR data in different ways. Correlation analyses between the 1H-NMR data and the drug metabolites identified from the LC/MS data were also performed. In this process, data fusion proved to be a valuable tool.
123

Stochastic Multi-Agent Plan Recognition, Knowledge Representation and Simulations for Efficient Decision Making

Suzic, Robert January 2006 (has links)
Advances in information technology produce large sets of data for decision makers. In both military and civilian efforts to achieve decision superiority, decision makers have to act agilely with proper, adequate and relevant information available. Information fusion is a process aimed to support decision makers’ situation awareness. This involves a process of combining data and information from disparate sources with prior information or knowledge to obtain an improved state estimate about an agent or other relevant phenomena. The important issue in decision making is not only assessing the current situation but also envisioning how a situation may evolve. In this work we focus on the prediction part of decision making called predictive situation awareness. We introduce new methodology where simulations and plan recognition are tools for achieving improved predictive situation awareness. Plan recognition is the term given to the process of inferring an agent’s intentions from a set of actions and is intended to support decision making. Beside its main task that is to support decision makers’ predictive situation awareness, plan recognition could also be used for coordination of actions and for developing computer-game agents that possess cognitive ability to recognize other agents’ behaviour. Successful plan recognition is heavily dependent on the data that is supplied. Therefore we introduce a bridge between plan recognition and sensor management where results of our plan recognition are reused to the control of, to give focus of attention to, the sensors that are expected to acquire the most important/relevant information. Our methodologies include knowledge representation, embedded stochastic simulations, microeconomics, imprecise knowledge and statistical inference issues. / QC 20100922
124

Situation Assessment in a Stochastic Environment using Bayesian Networks / Situationsuppfattning med Bayesianska nätverk i en stokastisk omgivning.

Ivansson, Johan January 2002 (has links)
The mental workload for fighter pilots in modern air combat is extremely high. The pilot has to make fast dynamic decisions under high uncertainty and high time pressure. This is hard to perform in close encounters, but gets even harder when operating beyond visual range when the sensors of an aircraft become the pilot's eyes and ears. Although sensors provide good estimates for position and speed of an opponent, there is a big loss in the assessment of a situation. Important tactical events or situations can occur without the pilot noticing, which can change the outcome of a mission completely. This makes the development of an automated situation assessment system very important for future fighter aircraft. This Master Thesis investigates the possibilities to design and implement an automated situation assessment system in a fighter aircraft. A Fuzzy-Bayesian hybrid technique is used in order to cope with the stochastic environment and making the development of the tactical situations library as clear and simple as possible.
125

Statistical Filtering for Multimodal Mobility Modeling in Cyber Physical Systems

Tabibiazar, Arash 30 January 2013 (has links)
A Cyber-Physical System integrates computations and dynamics of physical processes. It is an engineering discipline focused on technology with a strong foundation in mathematical abstractions. It shares many of these abstractions with engineering and computer science, but still requires adaptation to suit the dynamics of the physical world. In such a dynamic system, mobility management is one of the key issues against developing a new service. For example, in the study of a new mobile network, it is necessary to simulate and evaluate a protocol before deployment in the system. Mobility models characterize mobile agent movement patterns. On the other hand, they describe the conditions of the mobile services. The focus of this thesis is on mobility modeling in cyber-physical systems. A macroscopic model that captures the mobility of individuals (people and vehicles) can facilitate an unlimited number of applications. One fundamental and obvious example is traffic profiling. Mobility in most systems is a dynamic process and small non-linearities can lead to substantial errors in the model. Extensive research activities on statistical inference and filtering methods for data modeling in cyber-physical systems exist. In this thesis, several methods are employed for multimodal data fusion, localization and traffic modeling. A novel energy-aware sparse signal processing method is presented to process massive sensory data. At baseline, this research examines the application of statistical filters for mobility modeling and assessing the difficulties faced in fusing massive multi-modal sensory data. A statistical framework is developed to apply proposed methods on available measurements in cyber-physical systems. The proposed methods have employed various statistical filtering schemes (i.e., compressive sensing, particle filtering and kernel-based optimization) and applied them to multimodal data sets, acquired from intelligent transportation systems, wireless local area networks, cellular networks and air quality monitoring systems. Experimental results show the capability of these proposed methods in processing multimodal sensory data. It provides a macroscopic mobility model of mobile agents in an energy efficient way using inconsistent measurements.
126

Multiscale soil moisture retrievals from microwave remote sensing observations

Piles Guillem, Maria 16 July 2010 (has links)
La humedad del suelo es la variable que regula los intercambios de agua, energía, y carbono entre la tierra y la atmósfera. Mediciones precisas de humedad son necesarias para una gestión sostenible de los recursos hídricos, para mejorar las predicciones meteorológicas y climáticas, y para la detección y monitorización de sequías e inundaciones. Esta tesis se centra en la medición de la humedad superficial de la Tierra desde el espacio, a escalas global y regional. Estudios teóricos y experimentales han demostrado que la teledetección pasiva de microondas en banda L es optima para la medición de humedad del suelo, debido a que la atmósfera es transparente a estas frecuencias, y a la relación directa de la emisividad del suelo con su contenido de agua. Sin embargo, el uso de la teledetección pasiva en banda L ha sido cuestionado en las últimas décadas, pues para conseguir la resolución temporal y espacial requeridas, un radiómetro convencional necesitaría una gran antena rotatoria, difícil de implementar en un satélite. Actualmente, hay tres principales propuestas para abordar este problema: (i) el uso de un radiómetro de apertura sintética, que es la solución implementada en la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, en órbita desde noviembre del 2009; (ii) el uso de un radiómetro ligero de grandes dimensiones y un rádar operando en banda L, que es la solución que ha adoptado la misión Soil Moisture Active Passive (SMAP) de la NASA, con lanzamiento previsto en 2014; (iii) el desarrollo de técnicas de desagregación de píxel que permitan mejorar la resolución espacial de las observaciones. La primera parte de la tesis se centra en el estudio del algoritmo de recuperación de humedad del suelo a partir de datos SMOS, que es esencial para obtener estimaciones de humedad con alta precisión. Se analizan diferentes configuraciones con datos simulados, considerando (i) la opción de añadir información a priori de los parámetros que dominan la emisión del suelo en banda L —humedad, rugosidad, temperatura del suelo, albedo y opacidad de la vegetación— con diferentes incertidumbres asociadas, y (ii) el uso de la polarización vertical y horizontal por separado, o del primer parámetro de Stokes. Se propone una configuración de recuperación de humedad óptima para SMOS. La resolución espacial de los radiómetros de SMOS y SMAP (40-50 km) es adecuada para aplicaciones globales, pero limita la aplicación de los datos en estudios regionales, donde se requiere una resolución de 1-10 km. La segunda parte de esta tesis contiene tres novedosas propuestas de mejora de resolución espacial de estos datos: • Se ha desarrollado un algoritmo basado en la deconvolución de los datos SMOS que permite mejorar la resolución espacial de las medidas. Los resultados de su aplicación a datos simulados y a datos obtenidos con un radiómetro aerotransportado muestran que es posible mejorar el producto de resolución espacial y resolución radiométrica de los datos. • Se presenta un algoritmo para mejorar la resolución espacial de las estimaciones de humedad de SMOS utilizando datos MODIS en el visible/infrarrojo. Los resultados de su aplicación a algunas de las primeras imágenes de SMOS indican que la variabilidad espacial de la humedad del suelo se puede capturar a 32, 16 y 8 km. • Un algoritmo basado en detección de cambios para combinar los datos del radiómetro y el rádar de SMAP en un producto de humedad a 10 km ha sido desarrollado y validado utilizando datos simulados y datos experimentales aerotransportados. Este trabajo se ha desarrollado en el marco de las actividades preparatorias de SMOS y SMAP, los dos primeros satélites dedicados a la monitorización de la variación temporal y espacial de la humedad de la Tierra. Los resultados presentados contribuyen a la obtención de estimaciones de humedad del suelo con la precisión y la resolución espacial necesarias para un mejor conocimiento del ciclo del agua y una mejor gestión de los recursos hídricos. / Soil moisture is a key state variable of the Earth's system; it is the main variable that links the Earth's water, energy and carbon cycles. Accurate observations of the Earth's changing soil moisture are needed to achieve sustainable land and water management, and to enhance weather and climate forecasting skill, flood prediction and drought monitoring. This Thesis focuses on measuring the Earth's surface soil moisture from space at global and regional scales. Theoretical and experimental studies have proven that L-band passive remote sensing is optimal for soil moisture sensing due to its all-weather capabilities and the direct relationship between soil emissivity and soil water content under most vegetation covers. However, achieving a temporal and spatial resolution that could satisfy land applications has been a challenge to passive microwave remote sensing in the last decades, since real aperture radiometers would need a large rotating antenna, which is difficult to implement on a spacecraft. Currently, there are three main approaches to solving this problem: (i) the use of an L-band synthetic aperture radiometer, which is the solution implemented in the ESA Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009; (ii) the use of a large lightweight radiometer and a radar operating at L-band, which is the solution adopted by the NASA Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014; (iii) the development of pixel disaggregation techniques that could enhance the spatial resolution of the radiometric observations. The first part of this work focuses on the analysis of the SMOS soil moisture inversion algorithm, which is crucial to retrieve accurate soil moisture estimations from SMOS measurements. Different retrieval configurations have been examined using simulated SMOS data, considering (i) the option of adding a priori information from parameters dominating the land emission at L-band —soil moisture, roughness, and temperature, vegetation albedo and opacity— with different associated uncertainties and (ii) the use of vertical and horizontal polarizations separately, or the first Stokes parameter. An optimal retrieval configuration for SMOS is suggested. The spatial resolution of SMOS and SMAP radiometers (~ 40-50 km) is adequate for global applications, but is a limiting factor to its application in regional studies, where a resolution of 1-10 km is needed. The second part of this Thesis contains three novel downscaling approaches for SMOS and SMAP: • A deconvolution scheme for the improvement of the spatial resolution of SMOS observations has been developed, and results of its application to simulated SMOS data and airborne field experimental data show that it is feasible to improve the product of the spatial resolution and the radiometric sensitivity of the observations by 49% over land pixels and by 30% over sea pixels. • A downscaling algorithm for improving the spatial resolution of SMOS-derived soil moisture estimates using higher resolution MODIS visible/infrared data is presented. Results of its application to some of the first SMOS images show the spatial variability of SMOS-derived soil moisture observations is effectively captured at the spatial resolutions of 32, 16, and 8 km. • A change detection approach for combining SMAP radar and radiometer observations into a 10 km soil moisture product has been developed and validated using SMAP-like observations and airborne field experimental data. This work has been developed within the preparatory activities of SMOS and SMAP, the two first-ever satellites dedicated to monitoring the temporal and spatial variation on the Earth's soil moisture. The results presented contribute to get the most out of these vital observations, that will further our understanding of the Earth's water cycle, and will lead to a better water resources management.
127

Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery

Yu, Peter January 2009 (has links)
The mapping of sea ice is an important task for understanding global climate and for safe shipping. Currently, sea ice maps are created by human analysts with the help of remote sensing imagery, including synthetic aperture radar (SAR) imagery. While the maps are generally correct, they can be somewhat subjective and do not have pixel-level resolution due to the time consuming nature of manual segmentation. Therefore, automated sea ice mapping algorithms such as the multivariate iterative region growing with semantics (MIRGS) sea ice image segmentation algorithm are needed. MIRGS was designed to work with one-channel single-polarization SAR imagery from the RADARSAT-1 satellite. The launch of RADARSAT-2 has made available two-channel dual-polarization SAR imagery for the purposes of sea ice mapping. Dual-polarization imagery provides more information for distinguishing ice types, and one of the channels is less sensitive to changes in the backscatter caused by the SAR incidence angle parameter. In the past, this change in backscatter due to the incidence angle was a key limitation that prevented automatic segmentation of full SAR scenes. This thesis investigates techniques to make use of the dual-polarization data in MIRGS. An evaluation of MIRGS with RADARSAT-2 data was performed and showed that some detail was lost and that the incidence angle caused errors in segmentation. Several data fusion schemes were investigated to determine if they can improve performance. Gradient generation methods designed to take advantage of dual-polarization data, feature space fusion using linear and non-linear transforms as well as image fusion methods based on wavelet combination rules were implemented and tested. Tuning of the MIRGS parameters was performed to find the best set of parameters for segmentation of dual-polarization data. Results show that the standard MIRGS algorithm with default parameters provides the highest accuracy, so no changes are necessary for dual-polarization data. A hierarchical segmentation scheme that segments the dual-polarization channels separately was implemented to overcome the incidence angle errors. The technique is effective but requires more user input than the standard MIRGS algorithm.
128

MACHINE VISION FOR AUTOMATICVISUAL INSPECTION OF WOODENRAILWAY SLEEPERS USING UNSUPERVISED NEURAL NETWORKS

Manne, Mihira January 2009 (has links)
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
129

Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery

Yu, Peter January 2009 (has links)
The mapping of sea ice is an important task for understanding global climate and for safe shipping. Currently, sea ice maps are created by human analysts with the help of remote sensing imagery, including synthetic aperture radar (SAR) imagery. While the maps are generally correct, they can be somewhat subjective and do not have pixel-level resolution due to the time consuming nature of manual segmentation. Therefore, automated sea ice mapping algorithms such as the multivariate iterative region growing with semantics (MIRGS) sea ice image segmentation algorithm are needed. MIRGS was designed to work with one-channel single-polarization SAR imagery from the RADARSAT-1 satellite. The launch of RADARSAT-2 has made available two-channel dual-polarization SAR imagery for the purposes of sea ice mapping. Dual-polarization imagery provides more information for distinguishing ice types, and one of the channels is less sensitive to changes in the backscatter caused by the SAR incidence angle parameter. In the past, this change in backscatter due to the incidence angle was a key limitation that prevented automatic segmentation of full SAR scenes. This thesis investigates techniques to make use of the dual-polarization data in MIRGS. An evaluation of MIRGS with RADARSAT-2 data was performed and showed that some detail was lost and that the incidence angle caused errors in segmentation. Several data fusion schemes were investigated to determine if they can improve performance. Gradient generation methods designed to take advantage of dual-polarization data, feature space fusion using linear and non-linear transforms as well as image fusion methods based on wavelet combination rules were implemented and tested. Tuning of the MIRGS parameters was performed to find the best set of parameters for segmentation of dual-polarization data. Results show that the standard MIRGS algorithm with default parameters provides the highest accuracy, so no changes are necessary for dual-polarization data. A hierarchical segmentation scheme that segments the dual-polarization channels separately was implemented to overcome the incidence angle errors. The technique is effective but requires more user input than the standard MIRGS algorithm.
130

Probability Hypothesis Densities for Multitarget, Multisensor Tracking with Application to Passive Radar

Tobias, Martin 07 April 2006 (has links)
The probability hypothesis density (PHD), popularized by Ronald Mahler, presents a novel and theoretically-rigorous approach to multitarget, multisensor tracking. Based on random set theory, the PHD is the first moment of a point process of a random track set, and it can be propagated by Bayesian prediction and observation equations to form a multitarget, multisensor tracking filter. The advantage of the PHD filter lies in its ability to estimate automatically the expected number of targets present, to fuse easily different kinds of data observations, and to locate targets without performing any explicit report-to-track association. We apply a particle-filter implementation of the PHD filter to realistic multitarget, multisensor tracking using passive coherent location (PCL) systems that exploit illuminators of opportunity such as FM radio stations. The objective of this dissertation is to enhance the usefulness of the PHD particle filter for multitarget, multisensor tracking, in general, and within the context of PCL, in particular. This involves a number of thrusts, including: 1) devising intelligent proposal densities for particle placement, 2) devising a peak-extraction algorithm for extracting information from the PHD, 3) incorporating realistic probabilities of detection and signal-to-noise ratios (including multipath effects) to model realistic PCL scenarios, 4) using range, Doppler, and direction of arrival (DOA) observations to test the target detection and data fusion capabilities of the PHD filter, and 5) clarifying the concepts behind FISST and the PHD to make them more accessible to the practicing engineer. A goal of this dissertation is to serve as a tutorial for anyone interested in becoming familiar with the probability hypothesis density and associated PHD particle filter. It is hoped that, after reading this thesis, the reader will have gained a clearer understanding of the PHD and the functionality and effectiveness of the PHD particle filter.

Page generated in 0.0951 seconds