Spelling suggestions: "subject:"datorsystem"" "subject:"datorseende""
11 |
A Novel System for Deep Analysis of Large-Scale Hand Pose DatasetsTouranakou, Maria January 2018 (has links)
This degree project proposes the design and the implementation of a novel systemfor deep analysis on large-scale datasets of hand poses. The system consists of a set ofmodules for automatic redundancy removal, classification, statistical analysis andvisualization of large-scale datasets based on their content characteristics. In thisproject, work is performed on the specific use case of images of hand movements infront of smartphone cameras. The characteristics of the images are investigated, andthe images are pre-processed to reduce repetitive content and noise in the data. Twodifferent design paradigms for content analysis and image classification areemployed, a computer vision pipeline and a deep learning pipeline. The computervision pipeline incorporates several stages of image processing including imagesegmentation, hand detection as well as feature extraction followed by a classificationstage. The deep learning pipeline utilizes a convolutional neural network forclassification. For industrial applications with high diversity on data content, deeplearning is suggested for image classification and computer vision is recommendedfor feature analysis. Finally, statistical analysis is performed to visually extractrequired information about hand features and diversity of the classified data. Themain contribution of this work lies in the customization of computer vision and deeplearning tools for the design and the implementation of a hybrid system for deep dataanalysis. / Detta examensprojekt föreslår design och implementering av ett nytt system för djup analys av storskaliga datamängder av handställningar. Systemet består av en uppsättning moduler för automatisk borttagning av redundans, klassificering, statistisk analys och visualisering av storskaliga dataset baserade på deras egenskaper. I det här projektet utförs arbete på det specifika användningsområdet för bilder av handrörelser framför smarttelefonkameror. Egenskaperna hos bilderna undersöks, och bilderna förbehandlas för att minska repetitivt innehåll och ljud i data. Två olika designparadigmer för innehållsanalys och bildklassificering används, en datorvisionspipeline och en djuplärningsrörledning. Datasynsrörledningen innehåller flera steg i bildbehandling, inklusive bildsegmentering, handdetektering samt funktionen extraktion följt av ett klassificeringssteg. Den djupa inlärningsrörledningen använder ett fällningsnätverk för klassificering. För industriella applikationer med stor mångfald på datainnehåll föreslås djupinlärning för bildklassificering och vision rekommenderas för funktionsanalys. Slutligen utförs statistisk analys för att visuellt extrahera nödvändig information om handfunktioner och mångfald av klassificerade data. Huvuddelen av detta arbete ligger i anpassningen av datasyn och djupa inlärningsverktyg för design och implementering av ett hybridsystem för djup dataanalys.
|
12 |
Automated Estimation of Forest Row Spacing and Detection of Clearances: An Experimental StudyMohammad, Waled Khalid January 2024 (has links)
Background: This research explores the integration of satellite imagery and imageprocessing techniques to innovate forest monitoring methods. Traditional approachesoften fall short in scale and efficiency, necessitating enhanced techniques for accurateforest structure analysis. Objectives: The main goal is to develop a software prototype capable of automat-ing the measurement of tree row spacing and detecting clearing areas within forests,thereby facilitating more informed and efficient forest management and conservationefforts. Methods: The study employed computer vision techniques and image processingalgorithms using OpenCV to process high-resolution satellite images. The develop-ment and testing of the prototype involved iterative enhancements to refine accuracyand functionality. Results: The findings demonstrate that the prototype successfully identifies andmeasures forest structural features with high accuracy, confirming the effectivenessof integrating computational techniques with ecological monitoring practices. Conclusions: The successful application of satellite imagery and image processingsignificantly enhances forest monitoring capabilities, promoting sustainable forestmanagement. This research underscores the potential of technology to transformenvironmental conservation efforts by providing detailed, reliable data that supportsproactive management strategies. / Bakgrund: Denna forskning utforskar integrationen av satellitbilder och avanceradebildbehandlingstekniker för att innovera metoder för skogsövervakning. Traditionellatillvägagångssätt är ofta bristfälliga i skala och effektivitet, vilket kräver förbättradetekniker för noggrann analys av skogsstrukturer. Syften: Huvudmålet är att utveckla en programvaruprototyp som kan automatiseramätningen av trädradsavstånd och upptäcka kalhyggen inom skogar, vilket underlät-tar mer informerad och effektiv skogsförvaltning och bevarandeinsatser.Metoder: Studien använde datorsynstekniker och bildbehandlingsalgoritmer medOpenCV för att bearbeta högupplösta satellitbilder. Utvecklingen och testningen avprototypen involverade iterativa förbättringar för att förfina noggrannhet och funktionalitet. Resultat: Resultaten visar att prototypen framgångsrikt identifierar och mäterskogsstrukturella egenskaper med hög noggrannhet, vilket bekräftar effektivitetenav att integrera avancerade datatekniker med ekologiska övervakningsmetoder. Slutsatser: Den framgångsrika tillämpningen av satellitbilder och bildbehandlingförbättrar avsevärt möjligheterna till skogsövervakning och främjar hållbar skogsför-valtning. Denna forskning understryker teknikens potential att transformera miljöbe-varande insatser genom att tillhandahålla detaljerade, tillförlitliga data som stöderproaktiva förvaltningsstrategie
|
13 |
Novel beam shaping and computer vision methods for laser beam weldingMi, Yongcui January 2021 (has links)
Laser beam welding has been widely applied in different industrial sectors due to its unique advantages. However, there are still challenges, such as beam positioning in T-joint welding, and gap bridging in butt joint welding,especially in the case of varying gap width along a joint. It is expected that enabling more advanced control to a welding system, and obtaining more in-depth process knowledge could help to solve these issues. The aim of this work is to address such welding issues by a laser beam shaping technology using a novel deformable mirror together with computer vision methods and also to increase knowledge about the benefits and limitations with this approach. Beam shaping in this work was realized by a novel deformable mirror system integrated into an industrial processing optics. Together with a wave front sensor, a controlled adaptive beam shaping system was formed with a response time of 10 ms. The processes were monitored by a coaxial camera with selected filters and passive or active illumination. Conduction mode autogenous bead-on-plate welding and butt joint welding experiments have been used to understand the effect of beam shaping on the melt pool geometry. Circular Gaussian, and elliptical Gaussian shapes elongated transverse to and along the welding direction were studied. In-process melt pool images and cross section micrographs of the weld seams/beads were analyzed. The results showed that the melt pool geometry can be significantly modified by beam shaping using the deformable mirror. T-joint welding with different beam offset deviations relative to the center of the joint line was conducted to study the potential of using machine learning to track the process state. The results showed that machine learning can reach sufficient detection and estimation performance, which could also be used for on-line control. In addition, in-process and multidimensional data were accurately acquired using computer vision methods. These data reveal weaknesses of current thermo-fluid simulation model, which in turn can help to better understand and control laser beam welding. The obtained results in this work shows a huge potential in using the proposed methods to solve relevant challenges in laser beam welding. / Lasersvetsning används i stor utsträckning i olika industrisektorer på grund av dess unika fördelar. Det finns emellertid fortfarande utmaningar, såsom rätt positionering av laserstrålen vid genomträngningssvetsning av T-fogar och hantering av varierande spaltbredd längs fogen vid svetsning av stumfogar. Sådana problem förväntas kunna lösas med avancerade metoder för automatisering, metoder som också förväntas ge fördjupade kunskaper om processen. Syftet med detta arbete är att ta itu med dessa problem med hjälp av en teknik för lasereffektens fördelning på arbetsstycket, s.k. beam shaping. Det sker med hjälp av en ny typ av i realtid deformerbar spegel tillsammans med bildbehandling av kamerabilder från processen. För- och nackdelar med detta tillvägagångssätt undersöks.Beam shaping åstadkoms med hjälp av ny typ av deformerbart spegelsystem som integreras i en industriell processoptik. Tillsammans med en vågfrontsensor bildas ett adaptivt system för beam shaping med en svarstid på 10 ms. Processen övervakas av en kamera linjerad koaxialt med laserstrålen. För att kunna ta bilder av svetspunkten belyses den med ljus av lämplig våglängd, och kameran är försedd med ett motsvarande optiskt filter. Försök har utförts med svetsning utan tillsatsmaterial, direkt på plåtar, svetsning utan s.k. nyckelhål, för att förstå effekten av beam shaping på svetssmältans geometri. Gauss fördelade cirkulära och elliptiska former, långsträckta både tvärs och längs svetsriktningen har studerats. Bilder från svetssmältan har analyserats och även mikrostrukturen i tvärsnitt från de svetsade plåtarna. Resultaten visar att svetssmältans geometri kan modifieras signifikant genom beam shaping med hjälp av det deformerbara spegelsystemet. Genomträngningssvetsning av T-fogar med avvikelser relativt foglinjens centrum genomfördes för att studera potentialen i att använda maskininlärning för att fånga processens tillstånd. Resultaten visade att maskininlärning kan nå tillräcklig prestanda för detektering och skattning av denna avvikelse. Något som också kan användas för återkopplad styrning. Flerdimensionell processdata har samlats i realtid och analyserats med hjälp av bildbehandlingsmetoder. Dessa data avslöjar brister i nuvarande simuleringsmodeller,vilket i sin tur hjälper till med att bättre förstå och styra lasersvetsning.Resultaten från detta arbete uppvisar en god potential i att använda de föreslagna metoderna för att lösa relevanta utmaningar inom lasersvetsning. / <p>Till licentiatuppsats hör 2 inskickade artiklar, som visas inte nu.</p>
|
Page generated in 0.0317 seconds