Spelling suggestions: "subject:"ddc/ac""
1 |
Low Voltage Multi-level Converters using Split-wound Coupled InductorsEwanchuk, Jeffrey Unknown Date
No description available.
|
2 |
Comparison and Design of High Efficiency Microinverters for Photovoltaic ApplicationsDominic, Jason 14 January 2015 (has links)
With the decrease in availability of non-renewable energy sources coupled with the increase in the amount of energy required for the operation of personal electronic devices there has been an increased focus on developing systems that take advantage of renewable energy sources. Renewal energy sources such as photovoltaic (PV) panels have become more popular due to recent developments in PV panel manufacturing that decreases material costs and improves energy harvesting efficiency. Since PV sources are DC sources power conversion stages have to be used in order to interface this power to the existing electrical utility system.
The structure of large scale PV systems usually consists of several PV panels connected in series to achieve a high input source voltage that can be fed into a high power centralized DC-AC inverter. The drawback to this approach is that when the PV panels are subjected to less than ideal conditions. If a single PV panel is subjected to drastically less solar irradiation during cloud conditions, then its output power will drop dramatically. Since this panel is series connected with the other PV panels, their current output is also dragged low decreasing the power output of the system. Algorithms that have the power converter operate at different input conditions allow the system to operate at a maximum power point (MPP), however this only allows the system to operate at a higher power point and not the true MPP.
To get around this limitation a new PV system implementation was created by giving each panel its own DC-AC power conversion system. This configuration gives each panel the ability to operate at its own MPP increasing the total system energy harvest. Another advantage of the single panel DC-AC microinverter power conversion stage is that the outputs are parallel connected to the utility grid easily allowing the ability to expand the system without having to shut down the entire system.
The most prevalent implementation of the microinverter consists of a single power converter that uses the PV low voltage DC and outputs high voltage AC. In order to ensure that the double line AC ripple does not propagate to the PV panel a large bank of electrolytic capacitors are used to buffer the ripple. There is concern that the electrolytic capacitor will degrade over time and affect the system efficiency. To get around having to use electrolytic capacitors a two stage microinverter has been proposed. The two stage microinverter consists of a DC-DC converter that steps up the low DC voltage of the PV panel to high voltage DC and the second stage is a DC-AC inverter that takes the high voltage DC and converts it to high voltage AC. There is a capacitor that connects the two power converter stages called the DC link capacitor which can buffer the double line energy ripple without using electrolytic capacitors.
This thesis focuses on the review of several DC-AC inverter topologies suitable for use in PV microinverter systems. Operation capabilities such as common mode noise and efficiency are compared. The main focus of the review is to determine the optimal DC-AC inverter using the performance metrics of cost, efficiency and common mode performance. A 250 W prototype is built for each inverter topology to verify its performance and operation. / Master of Science
|
3 |
A Novel Auxiliary Resonant Snubber Inverter Using Wide Bandgap DevicesWei, Yu 16 May 2018 (has links)
In the application of power inverters, power density has become a key design specification where it has stringent requirements on system size and weight. Achieving high power density need to combine lasted wide bandgap (WBG) device technology and high switching frequency to reduce passive filter size thus further shrink overall space. While still maintaining decent power conversion efficiency and low electromagnetic interference (EMI) with higher switching frequency, soft-switching needs to be implemented.
A novel auxiliary resonant snubber is introduced. The design and operation are carried out, in which this snubber circuitry enables main Gallium Nitride (GaN) switches operating under zero voltage switching (ZVS) condition, and auxiliary Silicon Carbide (SiC) diodes switching under zero current switching (ZCS) condition. Besides, the auxiliary snubber circuitry gating algorithm is also optimized which allows reduction of the switching and conduction loss in auxiliary GaN switches to obtain higher system efficiency and better thermal performance. Here, this novel auxiliary resonant snubber circuitry is applied to a traditional full bridge inverter with flexible modulation suitability. This proposed inverter can be applied to a wide range of potential applications, such as string solar inverter, renewable energy combined distributed generation, dc-ac part of bi-directional electrical vehicle (EV) on-board charger, and uninterruptible power supply (UPS), etc. / Master of Science / This thesis combined an innovated resonant snubber circuit to resonate with traditional robust inverter topology with latest semiconductor devices implemented to achieve a high efficiency, high performance, low profile inverter system.
During the design procedure, control algorithm had been optimized, novel semiconductor devices were utilized, and comprehensive operation analyses were delivered. Finally an efficient and robust system was constructed and achieved the design goals.
With the reduction of non-renewable energy consumptions, the research work of this thesis carried out a novel inverter topology which can become a prominent candidate for tremendous applications such as solar panel, electrical vehicle charging, and other renewable energy sources.
|
4 |
Έλεγχος αντιστροφέα πηγής τάσης για διασύνδεση φωτοβολταϊκών συστημάτωνΠαπαστεφανάκης, Δημήτριος 27 August 2014 (has links)
H παρούσα διπλωματική εργασία μελέτα τις τεχνικές ανίχνευσης του σημείου μέγιστης ισχύος (Maximum Point Tracking, MPPT) φωτοβολταϊκής συστοιχίας και την προσομοίωση μιας εξ αυτών (Διαταραχής και Παρατήρησης, P&O) για μεταβαλλόμενη ένταση ηλιακής ακτινοβολίας και μεταβαλλόμενο φορτίο. Η προσομοίωση έγινε με το πρόγραμμα MATLAB/SIMULINK.
Στο πρώτο κεφάλαιο γίνεται μια εισαγωγή στις μορφές ενέργειας που χρησιμοποιούνται σήμερα και οι οποίες χωρίζονται σε δύο κατηγορίες, τις συμβατικές και τις ανανεώσιμες.
Στο δεύτερο κεφάλαιο αναλύεται η φωτοβολταϊκή τεχνολογία, παρουσιάζονται τα ηλεκτρικά χαρακτηριστικά και οι ενεργειακές καταστάσεις του φωτοβολταϊκού στοιχείου και δίνεται ο ορισμός του Σημείου Μέγιστης Ισχύος (Maximun Power Point, MPP), του Συντελεστή Πλήρωσης (Fill Factor, FF) και του Συντελεστή Απόδοσης (Performance Ratio, PR).
Στο τρίτο κεφάλαιο γίνεται μια παρουσίαση των μετατροπέων DC/DC διακοπτικού τρόπου λειτουργίας που χρησιμοποιούνται στα συστήματα MPPT και αναλύονται οι βασικές τοπολογίες τους.
Το τέταρτο κεφάλαιο αναφέρεται στους μονοφασικούς αντιστροφείς και αναλύεται η ημιτονοειδή PWM τεχνική ελέγχου των αντιστροφέων.
Στο πέμπτο κεφάλαιο γίνεται παρουσίαση των σημαντικότερων τεχνικών MPPT. Η κάθε τεχνική έχει ως στόχο την συνεχή ταύτιση του σημείου λειτουργίας με το εκάστοτε σημείο μέγιστης ισχύος. Αναφέρονται τα κύρια πλεονεκτήματα και μειονεκτήματα της κάθε μεθόδου ξεχωριστά, δίνοντας ιδιαίτερη βαρύτητα στην τεχνική «Διαταραχής και Παρατήρησης» (P&O) που θεωρείται η πιο διαδεδομένη και εύχρηστη λόγω της απλότητας στην υλοποίησή της.
Στο έκτο κεφάλαιο αναλύεται ξεχωριστά ο τρόπος που υλοποιήθηκε το κάθε υποσύστημα που συνθέτει το συνολικό υπό εξέταση σύστημα και παρουσιάζονται τα αποτελέσματα της προσομοίωσης του συστήματος.
Τέλος οδηγούμαστε στο συμπέρασμα ότι ο αλγόριθμος επιτυγχάνει την απορρόφηση της διαθέσιμης ισχύος της φωτοβολταϊκής λειτουργίας αλλά παρουσιάζει δυσλειτουργία κάτω από μεταβολές της ακτινοβολίας. / This diploma thesis examines the Maximum Power Point Tracking (MPPT) techniques for photovoltaic array and the simulation one of them (Perturb and Observe, P&O) for changing level of solar irradiation and changing load. Simulation was made with MATLAB/SIMULINK.
Τhe first chapter is an introduction to the types of energy used today and which are divided into two categories, conventional and renewable.
The second chapter analyzes the photovoltaic technology, presents the electrical characteristics and the energy states of the photovoltaic element and we define the Maximun Power Point (MPP), the Fill Factor (FF) and Performance Ratio (PR).
The third chapter is a presentation of switch mode DC / DC converters used in MPPT systems and analyze the basic topologies.
The fourth chapter deals with single-phase inverters and analyzed the sinusoidal PWM control technique of inverters.
In the fifth chapter we present the most important technical MPPT. We indicate the main advantages and disadvantages of each method separately, paying special attention to the technique “Perturb and Observe” (P&O), which is considered the most popular and easy to use because of its simplicity in implementation.
The sixth chapter the simulation of the whole MPPT system is discussed. We present the modeling of each system separately and we show the results.
Finally the study comes to conclusion that the algorithm achieves the enhancement of the available power of the photovoltaic array but it has erratic behaviour under changes of irradiation.
|
5 |
Ήπιες μορφές ενέργειας : σχεδίαση φωτοβολταϊκού συστήματος συνδεδεμένου στο δίκτυοΒεργοπούλου, Μαγδαληνή 28 September 2010 (has links)
Σκοπός της παρούσας διπλωματικής εργασίας είναι η σχεδίαση φωτοβολταϊκού (ΦΒ) συστήματος συνδεδεμένου στο δίκτυο διανομής της ΔΕΗ. Στόχος είναι η αναλυτική παρουσίαση των μονάδων που χρησιμοποιούνται στο συνδεδεμένο στο δίκτυο φωτοβολταϊκό σύστημα ούτως ώστε να καθίσταται δυνατή η εγκατάσταση του.
Στο πρώτο κεφάλαιο γίνεται μια εισαγωγική αναφορά για την ανάγκη χρησιμοποίησης των ΦΒ συστημάτων, τα είδη των συστημάτων που χρησιμοποιούνται σήμερα καθώς και των πλεονεκτημάτων και μειονεκτημάτων που έχουν σε σχέση με τις υπόλοιπες πηγές ενέργειας που έχει στη διάθεση του ο άνθρωπος σήμερα.
Στο δεύτερο κεφάλαιο γίνεται αναλυτική περιγραφή της ηλιακής ακτινοβολίας. Παρουσιάζονται οι εξισώσεις υπολογισμού της έντασης της ηλιακής ακτινοβολίας καθώς και οι εξισώσεις υπολογισμού της άμεσης και της διάχυτης ακτινοβολίας που προσπίπτουν σε μια επιφάνεια. Ακόμα, γίνεται αναφορά στη διαδικασία επιλογής κατάλληλου προσανατολισμού του φωτοβολταϊκού πλαισίου ώστε να επιτυγχάνεται η μέγιστη δυνατή απορρόφηση της ηλιακής ακτινοβολίας από το ΦΒ πλαίσιο. Στο τελευταίο τμήμα του κεφαλαίου αυτού περιγράφονται τα όργανα μέτρησης της ηλιακής ακτινοβολίας και η αρχή λειτουργίας τους.
Στο τρίτο κεφάλαιο παρουσιάζεται λεπτομερώς η διαδικασία παραγωγής ενέργειας όταν προσπίπτει ηλιακή ακτινοβολία σε μια επαφή δυο διαφορετικά νοθευμένων ημιαγωγών (φωτοβολταϊκό φαινόμενο). Στη συνέχεια περιγράφονται τα ηλεκτρικά χαρακτηριστικά των φωτοβολταϊκών στοιχείων και οι σημαντικότεροι παράγοντες που τα επηρεάζουν. Ακόμα γίνεται αναφορά στα είδη των φωτοβολταϊκών στοιχείων που έχουν κατασκευαστεί καθώς και στα ημιαγωγικά υλικά που χρησιμοποιούνται για την παραγωγή τους. Το κεφάλαιο κλείνει με την περιγραφή του τρόπου σύνδεσης των ΦΒ στοιχείων και τις διατάξεις προστασίας που χρησιμοποιούνται ώστε να μειώνονται όσο το δυνατόν περισσότερο οι απώλειες όταν κάποιο από τα συνδεδεμένα ΦΒ στοιχεία είτε δεν λειτουργεί είτε είναι σκιασμένο.
Στο τέταρτο κεφάλαιο αρχικά γίνεται μια αναφορά των ειδών των συνδεδεμένων στο δίκτυο φωτοβολταϊκών συστημάτων που υπάρχουν και εν συνεχεία παρουσιάζονται εκτενώς οι κατηγορίες των DC-AC μετατροπέων που χρησιμοποιούνται στα συνδεδεμένα στο δίκτυο συστήματα. Επίσης, περιγράφονται οι λειτουργίες που εκτελούν οι σύγχρονοι συνδεδεμένοι με το δίκτυο αντιστροφείς, η αρχή λειτουργίας τους, τα χαρακτηριστικά τους καθώς και οι ιδιότητες τους. Ακόμα περιγράφεται η συμπεριφορά του αντιστροφέα όταν συμβαίνει το φαινόμενο της υπερφόρτωσης. Στο τελευταίο τμήμα της ενότητας αυτής δίνεται ιδιαίτερη προσοχή στις παραμέτρους που πρέπει να ληφθούν υπόψη ώστε να επιλεγεί ο κατάλληλος αντιστροφέας για τη βέλτιστη λειτουργία του συστήματος.
Στο πέμπτο κεφάλαιο γίνεται μελέτη του συνδεδεμένου στο δίκτυο συστήματος. Αναφέρονται τα κριτήρια επιλογής της ισχύος του συστήματος και ο τρόπος υπολογισμού της ενέργειας που παράγεται. Στη συνέχεια, καταγράφονται οι εξισώσεις υπολογισμού του αριθμού των πλαισίων, καθορισμού της συνδεσμολογίας της φωτοβολταϊκής συστοιχίας, υπολογισμού της ισχύος εξόδου, υπολογισμού της ελάχιστης απόστασης μεταξύ δυο γειτονικών σειρών ΦΒ πλαισίων και του εμβαδού που θα καταλαμβάνουν τα ΦΒ πλαίσια. Κατόπιν, περιγράφεται η διαδικασία επιλογής του ιδανικού αντιστροφέα ώστε να επιλεγούν οι απαραίτητοι ηλεκτρικοί αγωγοί με την κατάλληλη διατομή. Εν συνεχεία, αναφέρεται ο τρόπος υπολογισμού των ηλεκτρικών καταναλώσεων που ενδεχομένως θα υπάρχουν. Τέλος, περιγράφεται αναλυτικά ο τρόπος γείωσης του συστήματος καθώς και των παραμέτρων που πρέπει να ληφθούν υπόψη ώστε να είναι ασφαλής η σύνδεσή του στο δίκτυο.
Στο έκτο κεφάλαιο μελετάται αναλυτικά η εγκατάσταση των συνδεδεμένων στο δίκτυο φωτοβολταϊκών συστημάτων σε κτιριακές εγκαταστάσεις. Περιγράφεται ο τρόπος επιλογής σωστού προσανατολισμού των φωτοβολταϊκών πλαισίων τα οποία είναι τοποθετημένα σε κτιριακή εγκατάσταση και γενικότερα οι παράγοντες που λαμβάνονται υπόψη για τη σχεδίαση και εγκατάσταση ενός κτιριακού φωτοβολταϊκού συστήματος. Ακολούθως, αναφέρεται η προστασία των ΦΒ από τυχόν υπερτάσεις καθώς και η αντικεραυνική προστασία τους. Ακόμα, εξηγείται αναλυτικά και παρουσιάζεται με σχήματα η σύνδεση των ΦΒ συστημάτων στο δίκτυο. Τέλος, παρουσιάζονται τα επιτρεπτά όρια και τα προβλήματα που προκύπτουν από την έγχυση αρμονικών συνιστωσών του ρεύματος και της τάσης στο δίκτυο χαμηλής τάσης.
Στο έβδομο κεφάλαιο μελετάται η εγκατάσταση φωτοβολταϊκού συστήματος 2880 W που περατώθηκε στο εργαστήριο παραγωγής, μεταφοράς , διανομής και χρησιμοποιήσεως ηλεκτρικής ενέργειας του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών του Πανεπιστημίου Πατρών. Περιγράφονται τα φωτοβολταϊκά πλαίσια και οι αντιστροφείς που επιλέχθηκαν, η διαδικασία σύνδεσης των πλαισίων και τέλος υπολογίζονται οι διατομές των καλωδίων που χρησιμοποιήθηκαν.
Στα παραρτήματα παρουσιάζονται τα ηλεκτρικά χαρακτηριστικά των πλαισίων και των αντιστροφέων από τις εταιρίες παραγωγής
. / The purpose of the present thesis is the design of a grid connected photovoltaic system. Firstly, the solar radiation as well as the solar radiation particularly in Greece is reported and the mathematical tools to calculate the solar radiation on earth´s surface are provided too. Moreover, the photovoltaic effect is presented and the electrical features of solar cells are analyzed. Yet, an important part of the thesis is the description of the features and properties of the grid connected inventers. Furthermore, a detailed study of a grid connected photovoltaic system is reported (PV modules, inverters, grounding etc.) especially the PV system on a building installation. Finally, a reference to the PV system of a nominal power of 2880W which is installed in the power systems laboratory at the Electrical and Computer Engineering Department at the University of Patras is made.
|
6 |
Modelação e controlo de conversor DC/AC para interligação de painéis fotovoltaicos à redeMarques, José Pedro Pinto Teixeira January 2009 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 2009
|
7 |
Single-Stage Wireless Power Transfer System with Single-Switch Secondary Side ModulationHsieh, Hsin-Che 25 April 2023 (has links)
Due to the loose coupling nature and separated primary/secondary side, achieving tight load regulation or implementing closed-loop control of output voltage/current is nontrivial in a wireless power transfer (WPT) system. Previously presented methods for regulating or controlling the output of a WPT system include incorporating either post-regulator stage, wireless communication from secondary to primary side, primary side sensing and modulation scheme, or dual active bridge type of topology. However, all existing methods have limitations and disadvantages in terms of increased size/cost, control complexity, or reliability in electrically noisy environments.
This dissertation proposes a single switch control and regulation mechanism based on the secondary side of the WPT system. Specifically, the duty cycle of the secondary side synchronous rectifier (SR) switch is modulated to control the output voltage or current. By modulating the SR duty cycle, output of the WPT system can be controlled without requiring additional regulator stages/power devices, a primary side sensing mechanism, or secondary to primary communication. The proposed control method lowers cost and simplifies the design of WPT systems while improving reliability in noisy environments. The proposed control and modulation mechanism maintains zero voltage switching of all power semiconductor switches so efficiency of the WPT system would not be compromised by implementing the proposed control scheme.
The proposed secondary side SR based control method can be applied to dc-dc WPT systems to control output voltage or current, or it could be used in a dc-ac WPT system to generate and regulate ac output if combined with an unfolding stage. When used in dc-ac WPT systems, the bulky output filter stage usually required in conventional dc-ac inverters is eliminated. The proposed control scheme is evaluated with computer simulation as well as hardware implementation and testing. / Doctor of Philosophy / Wireless power transfer (WPT) is an emerging technology that supplies electric power to loads without using wires or electrical contacts. WPT technology has many promising uses in consumer, industrial, transportation, biomedical, and other applications. However, unlike controlling the output voltage of a conventional power supply or power converter, controlling the output of a WPT system is not a simple task due to the physical separation between the transmitting and receiving sides. State-of-the-art methods for controlling the output of a WPT system include adding another power regulator stage to regulate output, incorporating secondary side (power receiver) to primary side (power transmitter) communication so that output information can be passed back to the primary side where that information is used to monitor and regulate output. In some systems, output information may also be estimated indirectly from primary side voltage/current information. However, all these methods have significant disadvantages. Adding another power converter stage increases cost and efficiency loss of the WPT system. Incorporating secondary to primary communication for output control is detrimental to the reliability of the PWT system because communication may be impacted by external noise. The reliability of primary side sensing and regulation is also severely impacted by component parameter variations in the WPT system.
This dissertation proposes a new mechanism that controls output of a WPT system at the receiver or secondary side without needing another power conversion stage, communication or any cooperation from primary side. The proposed control mechanism controls the turn on duration of the synchronous rectifier (SR) switch at the receiver side to modulate output voltage or current. Since SR technology is already prevalently used in power electronics systems, including WPT systems, to efficiently convert high frequency ac to dc before delivering power to the load, implementing the proposed control mechanism does not increase complexity or cost of the WPT system.
The proposed control mechanism is useful in both dc-dc and dc-ac WPT systems. In a dc-dc WPT system, the proposed mechanism can control or regulate output voltage or current independently from the primary side, while in a dc-ac WPT system the proposed mechanism can generate and regulate ac output. If used in a dc-ac WPT system an unfolding stage needs to be added, but the bulky output filter stage required in conventional pulse width modulation (PWM) dc-ac inverters for suppressing switching ripple is not needed. The proposed mechanism is verified with computer simulation as well as hardware prototyping in this dissertation.
|
8 |
Design of a Resonant Snubber Inverter for Photovoltaic Inverter SystemsFaraci, William Eric 06 May 2014 (has links)
With the rise in demand for renewable energy sources, photovoltaics have become increasingly popular as a means of reducing household dependence on the utility grid for power. But solar panels generate dc electricity, a dc to ac inverter is required to allow the energy to be used by the existing ac electrical distribution. Traditional full bridge inverters are able to accomplish this, but they suffer from many problems such as low efficiency, large size, high cost, and generation of electrical noise, especially common mode noise. Efforts to solve these issues have resulted in improved solutions, but they do not eliminate all of the problems and even exaggerate some of them.
Soft switching inverters are able to achieve high efficiency by eliminating the switching losses of the power stage switches. Since this action requires additional components that are large and have additional losses associated with them, these topologies have traditionally been limited to higher power levels. The resonant snubber inverter is a soft switching topology that eliminates many of these problems by taking advantage of the bipolar switching action of the power stage switches. This allows for a significant size reduction in the additional parts and elimination of common mode noise, making it an ideal candidate for lower power levels. Previous attempts to implement the resonant snubber inverter have been hampered by low efficiency due to parasitics of the silicon devices used, but, with recent developments in new semiconductor technologies such as silicon carbide and gallium nitride, these problems can be minimized and possibly eliminated.
The goal of this thesis is to design and experimentally verify a design of a resonant snubber inverter that takes advantage of new semiconductor materials to improve efficiency while maintaining minimal additional, parts, simple control, and elimination of common mode noise. A 600 W prototype is built. The performance improvements over previous designs are verified and compared to alternative high efficiency solutions along with a novel control technique for the auxiliary resonant snubber. A standalone and grid tie controller are developed to verify that the auxiliary resonant snubber and new auxiliary control technique does not complicate the closed loop control. / Master of Science
|
9 |
Soft-Switching, Interleaved Inverter for High Density ApplicationsBorn, Rachael Grace 06 December 2016 (has links)
Power density has become increasingly important for applications where weight and space are limited. Power density is a unique challenge requiring the latest transistor technology to push switching frequency to shrink passive filter size. Furthermore, while high efficiency is an important thermal handling strategy, it must be weighed against increases in component size. Google's Little Box Challenge shone light on these challenges in pushing the power density of a 2kW inverter. The rise in electric vehicle infrastructure and demand represents a unique application for power electronics: pushing the power handling capability and functionality of bi-directional, on-board electric vehicle chargers for faster charging while simultaneously shrinking them in size.
New wide-bandgap (WBG) devices, combined with soft-switching, now allow inverters to shrink in size by pushing to higher switching frequencies while maintaining efficiency. Classic H-Bridge topologies have limited switching frequency due to hard switching. Soft switching allows inverters to operate at higher frequency while minimizing switching loss. Concurrently, interleaving can reduce current handling stress and conduction loss better than simply paralleling two transistors.
A novel interleaved auxiliary resonant snubber for high-frequency soft-switching is introduced. The design of an auxiliary resonant snubber is discussed; this allows the main GaN MOSFETs to achieve zero voltage switching (ZVS). The auxiliary switches and SiC diodes achieve zero current switching (ZCS). This soft-switching strategy can be applied to any modulation scheme. Here, it is applied to an asymmetrical unipolar H-bridge with two high frequency legs interleaved. While soft-switching minimizes switching loss, conduction loss is simultaneously reduced for high-power applications by interleaving two high frequency legs. This topology is chosen for its conduction loss reduction and bi-directional capability. / Master of Science / Electric vehicles have become a unique application for power electronics where battery chargers must both handle higher power and shrink in size and weight. The latest transistor technology allows the designer to push switching frequency, shrinking the size of components and increasing the power density. In 2014, Google’s Little Box Challenge shone light on the design trade-offs of high power density design with new transistor technology for a 2kW inverter.
New semi-conductor materials now allow transistors to switch at higher frequency with less loss. To take advantage of these features, a new switching method is developed. The main power transistors are brought to zero voltage before turn-on with auxiliary switches and resonant current. Interleaving is added for better efficiency and power handling. With further control, this method could prove attractive for new, high-density power electronic designs. Applications for this include bi-directional chargers for electric vehicles in the 6kW range
|
10 |
Třífázový měnič pro synchronní servomotory / Three-phase converter for synchronous servomotorsPerout, Miroslav January 2020 (has links)
This diploma thesis is dealing with the design of a DC / AC converter for the control of PMSM motors. In the first step, the type of motor and the possibilities of sensing the position of the rotor are described. Subsequently, the power section is designed and the losses, heating, and approximate efficiency of the inverter are calculated. In the following step, the processor is selected and individual communication and protection circuits are designed. At the same time, control algorithms are analyzed. The last part is describing the implementation of the PCB and the inverter as a whole.
|
Page generated in 0.0601 seconds