• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 63
  • 58
  • 41
  • 30
  • 29
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 529
  • 359
  • 249
  • 135
  • 127
  • 114
  • 112
  • 103
  • 94
  • 88
  • 75
  • 73
  • 60
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Análise de um conversor boost interleaved com multiplicador de tensão para sistemas de geração distribuída que utilizam células a combustível como fonte primária / Study of a interleaved Boost with voltage multiplier converter apllied to a grid connected fuel cell system

Guilherme Henrique Favaro Fuzato 15 May 2015 (has links)
Esta dissertação aborda aspectos gerais relativos à utilização de um conversor CC-CC que opera conectado à rede de distribuição e que emprega como fonte primária células a combustível. Neste trabalho, a modelagem matemática em espaços de estados (pequenos sinais e média) dos conversores Boost e Boost Interleaved com Multiplicador de Tensão (IBVM), assim como as arquiteturas de controle utilizadas em modo tensão, corrente média e corrente de pico são comparadas para determinar qual delas apresenta melhor desempenho. Devido ao fato das células a combustível apresentarem tensão terminal baixa e corrente terminal elevada, há a necessidade de utilizar conversores eletrônicos com alto ganho para equalizar a tensão produzida pela fonte com o nível de tensão presente na rede de distribuição. Tendo isso em vista, este trabalho mostra uma análise do ganho estático de tensão do conversor Boost e IBVM considerando os efeitos das resistências parasitas dos componentes utilizados e da carga conectada nos terminais de saída do conversor. Como resultado da modelagem matemática do ganho, é mostrado um conjunto de equações que definem o valor mínimo de resistência do semicondutor de potência, indutor, capacitor do multiplicador de tensão e a máxima carga que os conversores Boost e Boost Interleaved com Multiplicador de Tensão podem suprir. Por fim, os resultados experimentais são apresentados com o intuito de validar os resultados teóricos e de simulação obtidos. / This thesis addresses general aspects concerning the application of DC-DC converters applied to a grid connected Fuel Cell system. It is discussed in this thesis the averaged and small signals space state modeling of the Boost and Interleaved Boost with Voltage Multiplier (IBVM) converter, it is also mentioned the control architectures in voltage mode, average current mode and peak current mode. The voltage and average current mode control architectures are simulated and implemented in hardware in order to be compared. Due to the fact that Fuel Cells present low terminal voltage and high current, it is needed to use high gain DC-DC converters with the aim connect the system to the grid. This thesis also presents an approach in the analysis of DC-DC converter static voltage gain considering the effect of the parasitic resistances and the load connected to the converter terminals. As a result of the gain analysis, it is presented a set of equation, from which is possible to determine the maximum value of the parasitic resistances for the switch, inductor and capacitor of the voltage multiplier. It is also calculated the maximum value of load connected to the Boost and Interleaved Boost with Voltage Multiplier converters with the aim to present the designed voltage gain. Additionally, by the maximum load value calculated it is possible to determine the maximum power that the converter will be capable to process, considering a specific point of operation. Finally, the designed DC-DC converter is implemented with the aim to validate the theoretical and simulation results.
342

Small-Signal Analysis of Non-isolated Cuk DC-DC Converter

Kathi, Lokesh 10 September 2020 (has links)
No description available.
343

Switching Control Strategies for the Robust Stabilization of a DC-DC Zeta Converter / DC-DCゼータコンバータのロバスト安定化のためのスイッチング制御方策

Hafez, Bin Sarkawi 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23545号 / 情博第775号 / 新制||情||132(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 太田 快人, 教授 山下 信雄, 教授 大塚 敏之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
344

A Novel Arc Welding Power Supply with Improved Power Factor Correction

Tan, Benjamin H 01 May 2020 (has links)
This paper presents the design and development of a novel Arc Welding Power Supply utilizing a modified two-switch forward converter topology. The proposed design improves the power quality by improving power factor to near unity and reducing total harmonic distortion. State space analysis of the proposed circuit showed that the circuit followed a boost-buck input output relationship. Simulation of the circuit was first implemented in LTspice to verify the functionality of the new topology. Hardware implementation of the proposed design was built on a scaled-down prototype for a proof-of-concept of the new topology. The prototype specifications were created for a 5A, 20V output with a 20-24V, 60Hz input. This project demonstrated that the proposed new topology was successful in obtaining a near unity power factor and a total harmonic distortion of less than 2%. Additionally, the prototype followed the simulation and calculations of a boost-buck function while varying duty cycle, and the final measurements aligned well with waveforms from the simulation.
345

Superkapacitory pro akumulaci energie / Supercapacitors energy storage

Kovařík, Jakub January 2017 (has links)
This paper describes the design of DC/DC converters designed for charging supercapacitors and subsequent transformation of voltage to the desired value. In the text are presented decreasing and increasing switched-mode voltage converter including the calculation of the individual components and also the design of converter that combines both types. Using simulation software has been verified the function of each circuits, which can serves as a lower power backup supply.
346

DC/DC měniče pro průmyslové napájecí zdroje. / DC/DC converters for industrial power supplies

Chudý, Andrej January 2021 (has links)
This diploma thesis deals with design and comparison of selected DC/DC converters, where the better of them is practically realized. The first part of the diploma thesis is focused on the general analysis of DC/DC power converters. The following part is theoretical analysis focused on the first selected topology – step-up converter. The second analysed topology is forward converter with full bridge on the primary side. The theoretical analysis also includes a description of synchronous rectifier, the differences between hard and soft switching, and the types of secondary rectifiers. Another part specializes in the detailed calculation of main components of selected converters and their subsequent power dimensioning. Both designed topologies are compared according to the required aspects. The selected better topology is supplemented by the design of control circuits and an auxiliary power supply. Practical realization of converter and commissioning follows. The diploma thesis ends with verification measurements on the realized converter and their subsequent analysis.
347

Switching Power Converter Techniques for Server and Mobile Applications

Singh, Manmeet 13 November 2020 (has links)
No description available.
348

Trakční měnič pro motorové kolo se stejnosměrným motorem / Traction inverter for an electric bike

Prudík, Martin January 2011 (has links)
A drive design for an electric bike with brushed DC disk motor is proposed in this thesis. Especially the design of a DC/DC converter with DSC control is described. The converter can operate as step-down and step-up too. Minimum dimensions and sufficient power for riding without human assistance were the main demands on the design.
349

Návrh vysokonapěťového zdroje sinusového napětí / Design of the sinusoidal high voltage source

Uherek, Jaromír January 2013 (has links)
Object of the master´s thesis is design of a high voltage power supply for testing insulation materials with output voltage 50 V - 2 kV at fixed frequency 50 Hz. The power supply is controlled by personal computer and measured data are sent back to the personal computer. The Universal Serial Bus (USB) is used for communication between the PC and the device.
350

Time-Domain/Digital Frequency Synchronized Hysteresis Based Fully Integrated Voltage Regulator

January 2019 (has links)
abstract: Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required. The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking. The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019

Page generated in 0.031 seconds