• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Squaring the square

Langenau, Holger 10 February 2018 (has links)
Given a square with integer side length n, we ask for the number of different ways to divide it into sub-squares, considering only the list of parts. We enumerate all possible lists and check whether a placement with those squares is possible. In order to do this, we propose a new algorithm for creating perfect square packings.
2

Argumentieren mit multiplen und dynamischen Repräsentationen / Reasoning with multiple and dynamic representations

Bauer, Andreas January 2015 (has links) (PDF)
Der Einzug des Rechners in den Mathematikunterricht hat eine Vielzahl neuer Möglichkeiten der Darstellung mit sich gebracht, darunter auch multiple, dynamisch verbundene Repräsentationen mathematischer Probleme. Die Arbeit beantwortet die Frage, ob und wie diese Repräsentationsarten von Schülerinnen und Schüler in Argumentationen genutzt werden. In der empirischen Untersuchung wurde dabei einerseits quantitativ erforscht, wie groß der Einfluss der in der Aufgabenstellung gegebenen Repräsentationsform auf die schriftliche Argumentationen der Schülerinnen und Schüler ist. Andererseits wurden durch eine qualitative Analyse spezifische Nutzungsweisen identifiziert und mittels Toulmins Argumentationsmodell beschrieben. Diese Erkenntnisse wurden genutzt, um Konsequenzen bezüglich der Verwendung von multiplen und/oder dynamischen Repräsentationen im Mathematikunterricht der Sekundarstufe zu formulieren.
3

On Runge-Kutta discontinuous Galerkin methods for compressible Euler equations and the ideal magneto-hydrodynamical model / Runge-Kutta Discontinuous-Galerkin Verfahren für die kompressiblen Euler Gleichungen und das ideale magnetohydrodynamische Modell

Gallego Valencia, Juan Pablo January 2017 (has links) (PDF)
An explicit Runge-Kutta discontinuous Galerkin (RKDG) method is used to device numerical schemes for both the compressible Euler equations of gas dynamics and the ideal magneto- hydrodynamical (MHD) model. These systems of conservation laws are known to have discontinuous solutions. Discontinuities are the source of spurious oscillations in the solution profile of the numerical approximation, when a high order accurate numerical method is used. Different techniques are reviewed in order to control spurious oscillations. A shock detection technique is shown to be useful in order to determine the regions where the spurious oscillations appear such that a Limiter can be used to eliminate these numeric artifacts. To guarantee the positivity of specific variables like the density and the pressure, a positivity preserving limiter is used. Furthermore, a numerical flux, proven to preserve the entropy stability of the semi-discrete DG scheme for the MHD system is used. Finally, the numerical schemes are implemented using the deal.II C++ libraries in the dflo code. The solution of common test cases show the capability of the method. / Ein explizite Runge-Kutta discontinous Galerkin (RKDG) Verfahren wird angewendet, um numerische Diskretisierungen, sowohl für die kompressiblen Eulergleichungen der Gasdynamik, als auch für die idealen Magnetohydrodynamik (MHD) Gleichungen zu entwickeln. Es ist bekannt, dass diese System von Erhaltungsgleichungen unstetige Lösungen besitzen. Unstetigkeiten sind die Quelle von störenden Oszillationen im Lösungsprofil der numerischen Näherung, wenn ein numerisches Verfahren von hoher Ordnung verwendet wird. Verschiedene Techniken werden miteinander verglichen um störende Oszillationen zu kontrollieren, die bei der Approximation von Unstetigkeiten in der Lösung auftreten. Ein Verfahren zur Lokalisierung von Schockwellen wird vorgestellt und es wird gezeigt, dass dieses Verfahren nützlich ist um Regionen, in denen störende Oszillationen auftreten, zu bestimmen, so dass ein Limiter verwendet werden kann um diese numerischen Artefakte zu eliminieren. Um die Positivität spezieller Variablen, wie die Dichte und den Druck, zu bewahren, wird ein spezieller „positivitätserhaltender“ Limiter verwendet. Des Weiteren wird ein numerischer Fluss, für den bewiesenermaßen das semi-diskrete DG Verfahren für das MHD System Entropie-Stabil ist, verwendet. Abschließend werden die numerischen Verfahren unter Verwendung der deal.II C++ Bibliotheken im dflo code implementiert. Simulationen bekannter Testbeispiele zeigen das Potential dieses numerischen Verfahrens.
4

Squaring the square

Langenau, Holger 10 February 2018 (has links) (PDF)
Given a square with integer side length n, we ask for the number of different ways to divide it into sub-squares, considering only the list of parts. We enumerate all possible lists and check whether a placement with those squares is possible. In order to do this, we propose a new algorithm for creating perfect square packings.
5

Contributions to complementarity and bilevel programming in Banach spaces

Mehlitz, Patrick 07 July 2017 (has links)
In this thesis, we derive necessary optimality conditions for bilevel programming problems (BPPs for short) in Banach spaces. This rather abstract setting reflects our desire to characterize the local optimal solutions of hierarchical optimization problems in function spaces arising from several applications. Since our considerations are based on the tools of variational analysis introduced by Boris Mordukhovich, we study related properties of pointwise defined sets in function spaces. The presence of sequential normal compactness for such sets in Lebesgue and Sobolev spaces as well as the variational geometry of decomposable sets in Lebesgue spaces is discussed. Afterwards, we investigate mathematical problems with complementarity constraints (MPCCs for short) in Banach spaces which are closely related to BPPs. We introduce reasonable stationarity concepts and constraint qualifications which can be used to handle MPCCs. The relations between the mentioned stationarity notions are studied in the setting where the underlying complementarity cone is polyhedric. The results are applied to the situations where the complementarity cone equals the nonnegative cone in a Lebesgue space or is polyhedral. Next, we use the three main approaches of transforming a BPP into a single-level program (namely the presence of a unique lower level solution, the KKT approach, and the optimal value approach) to derive necessary optimality conditions for BPPs. Furthermore, we comment on the relation between the original BPP and the respective surrogate problem. We apply our findings to formulate necessary optimality conditions for three different classes of BPPs. First, we study a BPP with semidefinite lower level problem possessing a unique solution. Afterwards, we deal with bilevel optimal control problems with dynamical systems of ordinary differential equations at both decision levels. Finally, an optimal control problem of ordinary or partial differential equations with implicitly given pointwise state constraints is investigated.
6

Contributions to complementarity and bilevel programming in Banach spaces / Beiträge zur Komplementaritäts- und Zwei-Ebenen-Optimierung in Banachräumen

Mehlitz, Patrick 24 July 2017 (has links) (PDF)
In this thesis, we derive necessary optimality conditions for bilevel programming problems (BPPs for short) in Banach spaces. This rather abstract setting reflects our desire to characterize the local optimal solutions of hierarchical optimization problems in function spaces arising from several applications. Since our considerations are based on the tools of variational analysis introduced by Boris Mordukhovich, we study related properties of pointwise defined sets in function spaces. The presence of sequential normal compactness for such sets in Lebesgue and Sobolev spaces as well as the variational geometry of decomposable sets in Lebesgue spaces is discussed. Afterwards, we investigate mathematical problems with complementarity constraints (MPCCs for short) in Banach spaces which are closely related to BPPs. We introduce reasonable stationarity concepts and constraint qualifications which can be used to handle MPCCs. The relations between the mentioned stationarity notions are studied in the setting where the underlying complementarity cone is polyhedric. The results are applied to the situations where the complementarity cone equals the nonnegative cone in a Lebesgue space or is polyhedral. Next, we use the three main approaches of transforming a BPP into a single-level program (namely the presence of a unique lower level solution, the KKT approach, and the optimal value approach) to derive necessary optimality conditions for BPPs. Furthermore, we comment on the relation between the original BPP and the respective surrogate problem. We apply our findings to formulate necessary optimality conditions for three different classes of BPPs. First, we study a BPP with semidefinite lower level problem possessing a unique solution. Afterwards, we deal with bilevel optimal control problems with dynamical systems of ordinary differential equations at both decision levels. Finally, an optimal control problem of ordinary or partial differential equations with implicitly given pointwise state constraints is investigated.

Page generated in 0.0235 seconds