• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 12
  • 12
  • Tagged with
  • 125
  • 125
  • 61
  • 61
  • 61
  • 48
  • 46
  • 40
  • 27
  • 27
  • 27
  • 26
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Reconstructing Functions on the Sphere from Circular Means

Quellmalz, Michael 09 April 2020 (has links)
The present thesis considers the problem of reconstructing a function f that is defined on the d-dimensional unit sphere from its mean values along hyperplane sections. In case of the two-dimensional sphere, these plane sections are circles. In many tomographic applications, however, only limited data is available. Therefore, one is interested in the reconstruction of the function f from its mean values with respect to only some subfamily of all hyperplane sections of the sphere. Compared with the full data case, the limited data problem is more challenging and raises several questions. The first one is the injectivity, i.e., can any function be uniquely reconstructed from the available data? Further issues are the stability of the reconstruction, which is closely connected with a description of the range, as well as the demand for actual inversion methods or algorithms. We provide a detailed coverage and answers of these questions for different families of hyperplane sections of the sphere such as vertical slices, sections with hyperplanes through a common point and also incomplete great circles. Such reconstruction problems arise in various practical applications like Compton camera imaging, magnetic resonance imaging, photoacoustic tomography, Radar imaging or seismic imaging. Furthermore, we apply our findings about spherical means to the cone-beam transform and prove its singular value decomposition. / Die vorliegende Arbeit beschäftigt sich mit dem Problem der Rekonstruktion einer Funktion f, die auf der d-dimensionalen Einheitssphäre definiert ist, anhand ihrer Mittelwerte entlang von Schnitten mit Hyperebenen. Im Fall d=2 sind diese Schnitte genau die Kreise auf der Sphäre. In vielen tomografischen Anwendungen sind aber nur eingeschränkte Daten verfügbar. Deshalb besteht das Interesse an der Rekonstruktion der Funktion f nur anhand der Mittelwerte bestimmter Familien von Hyperebenen-Schnitten der Sphäre. Verglichen mit dem Fall vollständiger Daten birgt dieses Problem mehrere Herausforderungen und Fragen. Die erste ist die Injektivität, also können alle Funktionen anhand der gegebenen Daten eindeutig rekonstruiert werden? Weitere Punkte sind die die Frage nach der Stabilität der Rekonstruktion, welche eng mit einer Beschreibung der Bildmenge verbunden ist, sowie der praktische Bedarf an Rekonstruktionsmethoden und -algorithmen. Diese Arbeit gibt einen detaillierten Überblick und Antworten auf diese Fragen für verschiedene Familien von Hyperebenen-Schnitten, angefangen von vertikalen Schnitten über Schnitte mit Hyperebenen durch einen festen Punkt sowie Kreisbögen. Solche Rekonstruktionsprobleme treten in diversen Anwendungen auf wie der Bildgebung mittels Compton-Kamera, Magnetresonanztomografie, fotoakustischen Tomografie, Radar-Bildgebung sowie der Tomografie seismischer Wellen. Weiterhin nutzen wir unsere Ergebnisse über sphärische Mittelwerte, um eine Singulärwertzerlegung für die Kegelstrahltomografie zu zeigen.
92

Numerical Methods for Bayesian Inference in Hilbert Spaces

Sprungk, Björn 15 February 2018 (has links)
Bayesian inference occurs when prior knowledge about uncertain parameters in mathematical models is merged with new observational data related to the model outcome. In this thesis we focus on models given by partial differential equations where the uncertain parameters are coefficient functions belonging to infinite dimensional function spaces. The result of the Bayesian inference is then a well-defined posterior probability measure on a function space describing the updated knowledge about the uncertain coefficient. For decision making and post-processing it is often required to sample or integrate wit resprect to the posterior measure. This calls for sampling or numerical methods which are suitable for infinite dimensional spaces. In this work we focus on Kalman filter techniques based on ensembles or polynomial chaos expansions as well as Markov chain Monte Carlo methods. We analyze the Kalman filters by proving convergence and discussing their applicability in the context of Bayesian inference. Moreover, we develop and study an improved dimension-independent Metropolis-Hastings algorithm. Here, we show geometric ergodicity of the new method by a spectral gap approach using a novel comparison result for spectral gaps. Besides that, we observe and further analyze the robustness of the proposed algorithm with respect to decreasing observational noise. This robustness is another desirable property of numerical methods for Bayesian inference. The work concludes with the application of the discussed methods to a real-world groundwater flow problem illustrating, in particular, the Bayesian approach for uncertainty quantification in practice. / Bayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
93

A framework for efficient hierarchic plate and shell elements

Weise, Michael January 2017 (has links)
The Mindlin-Reissner plate model is widely used for the elastic deformation simulation of moderately thick plates. Shear locking occurs in the case of thin plates, which means slow convergence with respect to the mesh size. The Kirchhoff plate model does not show locking effects, but is valid only for thin plates. One would like to have a method suitable for both thick and thin plates. Several approaches are known to deal with the shear locking in the Mindlin-Reissner plate model. In addition to the well-known MITC elements and other approaches based on a mixed formulation, hierarchical methods have been developed in the recent years. These are based on the Kirchhoff model and add terms to account for shear deformations. We present some of these methods and develop a new hierarchic plate formulation. This new model can be discretised by a combination of C0 and C1 finite elements. Numerical tests show that the new formulation is locking-free and numerically efficient. We also give an extension of the model to a hierarchical Naghdi shell based on a Koiter shell formulation with unknowns in Cartesian coordinates.:1 Introduction 2 Plate theory 3 Shell theory 4 Conclusion
94

Efficient Computation of Electrostatic Interactions in Particle Systems Based on Nonequispaced Fast Fourier Transforms

Nestler, Franziska 27 August 2018 (has links)
The present thesis is dedicated to the efficient computation of electrostatic interactions in particle systems, which is of great importance in the field of molecular dynamics simulations. In order to compute the therefor required physical quantities with only O(N log N) arithmetic operations, so called particle-mesh methods make use of the well-known Ewald summation approach and the fast Fourier transform (FFT). Typically, such methods are able to handle systems of point charges subject to periodic boundary conditions in all spatial directions. However, periodicity is not always desired in all three dimensions and, moreover, also interactions to dipoles play an important role in many applications. Within the scope of the present work, we consider the particle-particle NFFT method (P²NFFT), a particle-mesh approach based on the fast Fourier transform for nonequispaced data (NFFT). An extension of this method for mixed periodic as well as open boundary conditions is presented. Furthermore, the method is appropriately modified in order to treat particle systems containing both charges and dipoles. Consequently, an efficient algorithm for mixed charge-dipole systems, that additionally allows a unified handling of various types of periodic boundary conditions, is presented for the first time. Appropriate error estimates as well as parameter tuning strategies are developed and verified by numerical examples. / Die vorliegende Arbeit widmet sich der Berechnung elektrostatischer Wechselwirkungen in Partikelsystemen, was beispielsweise im Bereich der molekulardynamischen Simulationen eine zentrale Rolle spielt. Um die dafür benötigten physikalischen Größen mit lediglich O(N log N) arithmetischen Operationen zu berechnen, nutzen sogenannte Teilchen-Gitter-Methoden die Ewald-Summation sowie die schnelle Fourier-Transformation (FFT). Typischerweise können derartige Verfahren Systeme von Punktladungen unter periodischen Randbedingungen in allen Raumrichtungen handhaben. Periodizität ist jedoch nicht immer bezüglich aller drei Dimensionen erwünscht. Des Weiteren spielen auch Wechselwirkungen zu Dipolen in vielen Anwendungen eine wichtige Rolle. Zentraler Gegenstand dieser Arbeit ist die Partikel-Partikel-NFFT Methode (P²NFFT), ein Teilchen-Gitter-Verfahren, welches auf der schnellen Fouriertransformation für nichtäquidistante Daten (NFFT) basiert. Eine Erweiterung dieses Verfahrens auf gemischt periodische sowie offene Randbedingungen wird vorgestellt. Außerdem wird die Methode für die Behandlung von Partikelsystemen, in denen sowohl Ladungen als auch Dipole vorliegen, angepasst. Somit wird erstmalig ein effizienter Algorithmus für gemischte Ladungs-Dipol-Systeme präsentiert, der zusätzlich die Behandlung sämtlicher Arten von Randbedingungen mit einem einheitlichen Zugang erlaubt. Entsprechende Fehlerabschätzungen sowie Strategien für die Parameterwahl werden entwickelt und anhand numerischer Beispiele verifiziert.
95

Taylor and rank-1 lattice based nonequispaced fast Fourier transform

Volkmer, Toni 25 February 2013 (has links)
The nonequispaced fast Fourier transform (NFFT) allows the fast approximate evaluation of trigonometric polynomials with frequencies supported on full box-shaped grids at arbitrary sampling nodes. Due to the curse of dimensionality, the total number of frequencies and thus, the total arithmetic complexity can already be very large for small refinements at medium dimensions. In this paper, we present an approach for the fast approximate evaluation of trigonometric polynomials with frequencies supported on an arbitrary subset of the full grid at arbitrary sampling nodes, which is based on Taylor expansion and rank-1 lattice methods. For the special case of symmetric hyperbolic cross index sets in frequency domain, we present error estimates and numerical results.
96

Möglichkeiten zur Steuerung von Trust-Region Verfahren im Rahmen der Parameteridentifikation

Clausner, André 10 May 2006 (has links)
Zur Simulation technischer Prozesse ist eine hinreichend genaue Beschreibung des Materialverhaltens notwendig. Die hierfür häufig verwendeten phänomenologischen Ansätze, wie im vorliegenden Fall die HILLsche Fließbedingung, enthalten materialspezifische Parameter, welche nicht direkt messbar sind. Die Identifikation dieser Materialparameter erfolgt in der Regel durch Minimierung eines Fehlerquadratfunktionals, welches Differenzen von Messwerten und zugehörigen numerisch berechneten Vergleichswerten enthält. In diesem Zusammenhang haben sich zur Lösung dieser Minimierungsaufgabe die Trust-Region Verfahren als gut geeignet herausgestellt. Die Aufgabe besteht darin, die verschiedenen Möglichkeiten zur Steuerung eines Trust-Region Verfahrens, im Hinblick auf die Eignung für das vorliegende Identifikationsproblem, zu untersuchen. Dazu werden die Quadratmittelprobleme und deren Lösungsverfahren überblicksmäßig betrachtet. Danach wird näher auf die Trust-Region Verfahren eingegangen, wobei sich im Weiteren auf Verfahren mit positiv definiten Ansätzen für die Hesse-Matrix, den Levenberg-Marquardt Verfahren, beschränkt wird. Danach wird ein solcher Levenberg-Marquardt Algorithmus in verschiedenen Ausführungen implementiert und an dem vorliegenden Identifikationsproblem getestet. Als Ergebnis stellt sich eine gute Kombination aus verschiedenen Teilalgorithmen des Levenberg-Marquardt Algorithmus mit einer hohen Konvergenzgeschwindigkeit heraus, welche für das vorliegende Problem gut geeignet ist.:1 Einleitung 8 2 Nichtlineare Quadratmittelprobleme 9 2.1 Herkunft der Residuen: Das Prinzip der kleinsten Fehlerquadrate 10 2.2 Auftretende Differentialmatrizen 11 2.2.1 Lipschitzbedingung für die Unterscheidung der Aufgabenklasse im Hinblick auf die Residuen 12 2.3 Aufgabenklassen 13 2.3.1 Kleine und Null-Residuen 13 2.3.2 Große Residuen 13 2.3.3 Große Probleme 14 2.4 Modellstufen für f(x) um eine lokale Konstellation xk 15 2.5 Eigenschaften der Gauß-Newton Approximation der Hesse-Matrix 16 3 Identifikation der Materialparameter der HILLschen Fließbedingung für die plastische Verformung anisotroper Werkstoffe 17 4 ¨Ubersicht über monoton fallende Optimierungsverfahren für nichtlineare Funktionen 19 4.1 Die Idee der Line-Search Verfahren 19 4.2 Die Idee der Trust-Region Verfahren 20 4.3 Übersichtstabelle Über die Verfahren zur unrestringierten Optimierung 21 4.4 Ermittlungsmethoden fÜr die Suchrichtung sk bei Line-Search Methoden 22 4.4.1 Gradientenverfahren 22 4.4.2 Das Newton Verfahren 22 4.4.3 Quasi-Newton Verfahren 23 4.4.4 Gauß-Newton Verfahren 24 4.4.5 Methode der konjugierten Gradienten 25 4.4.6 Koordinatenabstiegsmethode nach Ahlers,Schwartz,Waldmann [1] 25 4.5 Modelle für die Trust-Region Verfahren 26 4.5.1 Der Cauchy Punkt 26 4.5.2 Das Newton Trust-Region Verfahren 27 4.5.3 Quasi-Newton Trust-Region Verfahren 27 4.5.4 Gauß-Newton Trust-Region: Levenberg-Marquardt Verfahren 27 4.6 Vergleich der Hauptstrategien 27 5 Die Trust-Region Verfahren 29 5.1 Die Konvergenz des Trust-Region Algorithmus zu stationären Punkten 34 5.2 Die Berechnung des Trust-Region Schrittes 35 5.3 Der Cauchy Punkt 37 5.4 Die Lösungsverfahren 38 5.5 Nahezu exakte Lösung des Trust-Region Problems, Regularisierung . 38 5.6 Struktur und Lösung der nahezu exakten Methode für den Normalfall 42 5.6.1 Ermitteln des Minimums s( lambda) des aktuellen Modells 46 5.6.1.1 Lösung mittels Cholesky Faktorisierung 47 5.6.1.2 Lösung mittels QR-Faktorisierung 47 5.6.1.3 Lösung mittels Singulärwertzerlegung 47 5.6.2 Das Ermitteln des Regularisierungsparameters 48 5.6.3 Ermitteln der Ableitung 0i( ) 51 5.6.4 Abbruch der -Iteration 52 5.6.5 Absichern der -Iteration 52 5.6.6 Ermitteln des Verhältnisses k 52 5.6.7 Auffrischen der Schrittnebenbedingung k 53 5.6.8 Startwerte für den Trust-Region Algorithmus 56 5.6.8.1 Startwerte 0 für den Trust-Region Radius 56 5.6.8.2 Startwerte für den Regularisierungsparameter 0 56 5.6.9 Konvergenz von Algorithmen, basierend auf nahezu exakten Lösungen 57 5.7 Approximation des Trust-Region Problems 57 5.7.1 Die Dogleg Methode 58 5.7.2 Die zweidimensionale Unterraumminimierung 60 5.7.3 Das Steihaug Vorgehen 61 5.7.4 Konvergenz der Approximationsverfahren 62 6 Trust-Region Verfahren mit positiv definiter Approximation der Hesse-Matrix: Das Levenberg-Marquardt Verfahren 63 6.1 Vorhandene Matrizen und durchführbare Methoden 64 6.2 Lösen des Levenberg-Marquardt Problems 66 6.2.1 Ermitteln von s( ) 68 6.2.1.1 Cholesky Faktorisierung 68 6.2.1.2 QR-Faktorisierung 68 6.2.1.3 Singulärwertzerlegung 68 6.2.2 Ermittlung des Regularisierungsparameter 69 6.2.3 Absichern der -Iteration 71 6.2.3.1 Absichern für die Strategie von Hebden 71 6.2.3.2 Absichern für die Newtonmethode 72 6.2.4 Weitere Teilalgorithmen 73 6.3 Ein prinzipieller Levenberg-Marquardt Algorithmus 73 7 Skalierung der Zielparameter 74 8 Abbruchkriterien für die Optimierungsalgorithmen 76 8.1 Abbruchkriterien bei Erreichen eines lokalen Minimums 76 8.2 Abbruchkriterien bei Erreichen der Maschinengenauigkeit für Trust-Region Verfahren 77 9 Test der Implementation des Levenberg-Marquardt Verfahrens 78 9.1 Test der Leistung für einzelne Parameter 79 9.2 Test der Leistung für Optimierungen mit mehreren Parametern 80 9.3 Test des Moduls 1 80 9.4 Test Modul 2 und Modul 3 81 9.5 Test des Moduls 4 81 9.6 Test des Moduls 5 81 9.7 Test des Modul 6 82 9.8 Test des Modul 7 83 9.9 Test des Modul 8 84 9.10 Modul 9 und Modul 10 84 9.11 Test mit verschiedenen Verfahrensparametern 85 9.12 Optimale Konfiguration 86 10 Zusammenfassung 87 11 Ausblick 88 11.1 Weiterführendes zu dem bestehenden Levenberg-Marquardt Verfahren 88 11.2 Weiterführendes zu den Trust-Region Verfahren 88 11.3 Weiterführendes zu den Line-Search Verfahren 89 11.4 Weiterführendes zu den Gradientenverfahren 89 Literaturverzeichnis 93 A Implementation: Das skalierte Levenberg-Marquardt Verfahren 95 A.1 Modul 1.x: 0-Wahl 95 A.1.1 Modul 1.1 95 A.1.2 Modul 1.2 96 A.1.3 Modul 1.3 96 A.1.4 Programmtechnische Umsetzung Modul 1 96 A.2 Modul 2.x: Wahl der Skalierungsmatrix 96 A.2.1 Modul 2.1 96 A.2.2 Modul 2.2 97 A.2.3 Programmtechnische Umsetzung Modul 2 97 A.3 Modul 3.x: Wahl der oberen und unteren Schranke l0, u0 für die - Iteration 97 A.3.1 Modul 3.1 97 A.3.2 Modul 3.2 97 A.3.3 Programmtechnische Umsetzung Modul 3 98 A.4 Modul 4.x: Wahl des Startwertes für den Regularisierungsparameter 0 98 A.4.1 Modul 4.1 98 A.4.2 Modul 4.2 99 A.4.3 Modul 4.3 99 A.4.4 Modul 4.4 99 A.4.5 Programmtechnische Umsetzung Modul 4 100 A.5 Modul 5.x: Die abgesicherte -Iteration 100 A.5.1 Modul 5.1 Die Iteration nach dem Schema von Hebden für 1 101 A.5.2 Modul 5.2 Die abgesicherte Iteration mit dem Newtonverfahren für 2 101 A.5.3 Die abgesicherte Iteration mit dem Newtonverfahren für 2 mittels Cholesky Zerlegung 102 A.5.4 Programmtechnische Umsetzung Modul 5 102 A.6 Modul 6.x: Die Ermittlung des Verhältnisses k 103 A.6.1 Modul 6.1: Herkömmliche Ermittlung 103 A.6.2 Modul 6.2: Numerisch stabile Ermittlung 104 A.6.3 Programmtechnische Umsetzung Modul 6 104 A.7 Modul 7.x: Auffrischen der Schrittnebenbedingung 105 A.7.1 Modul 7.1: Einfache Wahl 105 A.7.2 Modul 7.2: Wahl mit Berücksichtigung von Werten k < 0 105 A.7.3 Modul 7.3: Wahl mit Approximation von ffl 105 A.7.4 Programmtechnische Umsetzung Modul 7 106 A.8 Modul 8.x: Entscheidung über Akzeptanz des nächsten Schrittes sk . 107 A.8.1 Modul 8.1: Eine Akzeptanzbedingung 107 A.8.2 Modul 8.2: Zwei Akzeptanzbedingungen 107 A.8.3 Programmtechnische Umsetzung Modul 8 107 A.9 Modul 9.x: Abbruchbedingungen für den gesamten Algorithmus 107 A.9.1 Programmtechnische Umsetzung Modul 9 108 A.10 Modul 10.x: Berechnung des Schrittes s( ) 108 A.10.1 Modul 10.1 108 A.10.2 Modul 10.2 108 A.10.3 Programmtechnische Umsetzung Modul 10 108 A.11 Benötigte Prozeduren 109 A.11.1 Vektormultiplikation 109 A.11.2 Matrixmultiplikation 109 A.11.3 Matrixaddition 109 A.11.4 Cholesky Faktorisierung 110 A.11.5 Transponieren einer Matrix 111 A.11.6 Invertieren einer Matrix 111 A.11.6.1 Determinante einer Matrix 111 A.11.7 Normen 112 A.11.7.1 Euklidische Vektornorm 112 A.11.7.2 Euklidische Matrixnorm 112 A.11.8 Ermittlung von 1 112 A.11.9 Ermittlung von 2 112 A.11.10Ermittlung von 01 112 A.11.11Ermittlung von 02 .112 A.11.12Ermittlung von mk(s) 113 A.12 Programmablauf 113 A.13 Fehlercodes 114 B Weiterführendes: Allgemeines 116 B.1 Total Least Squares, Orthogonal distance regression 116 B.2 Lipschitz Konstante und Lipschitz Stetigkeit in nichtlinearen Quadratmittelproblemen 116 B.3 Beweis für das Prinzip der kleinsten Fehlerquadrate als beste Möglichkeit der Anpassung von Modellgleichungen an Messwerte 117 B.4 Konvergenzraten 119 B.5 Betrachtung der Normalengleichung als äquivalente Extremalbedingung 119 B.6 Der Cauchy Punkt 120 B.7 Minimumbedingungen 122 C Weiterführendes: Matrizen 123 C.1 Reguläre und singuläre Matrizen 123 C.2 Rang einer Matrix 123 C.3 Definitheit von quadratischen Matrizen 124 C.4 Kondition einer Matrix 125 C.5 Spaltenorthonormale und orthogonale Matrizen 125 C.6 Singulärwertzerlegung einer Matrix, SVD 126 C.7 Der Lanczos Algorithmus 127 C.8 Die QR Zerlegung einer Matrix 127 C.8.1 Gram Schmidt Orthogonalisierung 127 C.8.2 Householder Orthogonalisierung 127 C.9 Die Cholesky Faktorisierung 130 C.10 Die LINPACK Technik 131 D Daten und Bilder zum Levenberg-Marquardt Verfahren 132 D.1 Wichtige Funktionsverläufe des LM-Verfahrens 134 D.2 Einzelne Parameteroptimierungen 136 D.3 Kombinierte Parameteroptimierungen, P1,P2,P3 139 D.4 Vergleich Ableitungsgüte, Konvergenzproblem 142 D.5 Test des Modul 1 145 D.6 Test Modul 4 und 5 146 D.7 Test des Modul 6 147 D.8 Test des Modul 7 148 D.9 Test des Modul 8 151 D.10 Test verschiedener Algorithmusparameter 152 D.11 Standartalgorithmus und Verbesserter 155
97

Anwendung von Line-Search-Strategien zur Formoptimierung und Parameteridentifikation

Clausner, André 17 September 2007 (has links)
Die kontinuierliche Weiterentwicklung und Verbesserung technischer Prozesse erfolgt heute auf der Basis stochastischer und deterministischer Optimierungsstrategien in Kombination mit der numerischen Simulation dieser Abläufe. Da die FE-Simulation von Umformvorgängen in der Regel sehr zeitintensiv ist, bietet sich für die Optimierung solcher Prozesse der Einsatz deterministischer Methoden an, da hier weniger Optimierungsschritte und somit auch weniger FE-Simulationen notwendig sind. Eine wichtige Anforderung an solche Optimierungsverfahren ist globale Konvergenz zu lokalen Minima, da die optimalen Parametersätze nicht immer näherungsweise bekannt sind. Die zwei wichtigsten Strategien zum Ausdehnen des beschränkten Konvergenzradius der natürlichen Optimierungsverfahren (newtonschrittbasierte Verfahren und Gradientenverfahren) sind die Line-Search-Strategie und die Trust-Region-Strategie. Die Grundlagen der Line-Search-Strategie werden aufgearbeitet und die wichtigsten Teilalgorithmen implementiert. Danach wird dieses Verfahren auf eine effiziente Kombination der Teilalgorithmen und Verfahrensparameter hin untersucht. Im Anschluss wird die Leistung eines Optimierungsverfahrens mit Line-Search-Strategie verglichen mit der eines ebenfalls implementierten Optimierungsverfahrens mit skalierter Trust-Region-Strategie. Die Tests werden nach Einfügen der implementierten Verfahren in das Programm SPC-Opt anhand der Lösung eines Quadratmittelproblems aus der Materialparameteridentifikation sowie der Formoptimierung eines Umformwerkzeugs vorgenommen.:1 Einleitung 7 2 Verfahren zur unrestringierten Optimierung 9 2.1 Vorbemerkungen 9 2.2 Der Schrittvektor sk 10 2.3 Natürliche Schrittweite und Konvergenz der Verfahren 11 2.4 Richtung des steilsten Abstiegs 12 2.5 Newtonschrittbasierte Verfahren 13 2.5.1 Newton-Verfahren 15 2.5.2 Quasi-Newton-Verfahren der Broyden-Klasse 15 2.5.3 Der BFGS-Auffrisch-Algorithmus 18 2.5.4 Die SR1-Auffrisch-Formel 19 2.5.5 Die DFP-Auffrisch-Formel 20 2.5.6 Gauß-Newton-Verfahren 20 2.6 Erzwingen der Bedingung der positiven Definitheit von Gk 21 3 Übersicht über die Verfahren zum Stabilisieren der natürlichen Schrittweiten 24 3.1 Das Prinzip der Line-Search-Verfahren 24 3.2 Das Prinzip der Trust-Region-Verfahren 26 3.3 Vergleich der Trust-Region- und der Line-Search-Strategien 27 4 Line-Search-Strategien 30 4.1 Vorbemerkungen 30 4.2 Ein prinzipieller Line-Search-Algorithmus 33 5 Die Akzeptanzkriterien für die Line-Search-Strategien 36 5.1 Die exakte Schrittweite 37 5.2 Das Armijo-Kriterium, ein Abstiegskriterium 39 5.2.1 Das klassische Armijo-Kriterium 39 5.2.2 Armijo-Kriterium mit unterer Schranke fflo > 0 40 5.3 Die Goldstein-Kriterien 42 5.4 Die Wolfe-Kriterien 44 5.4.1 Die einfachen Wolfe-Kriterien 44 5.4.2 Die starken Wolfe-Kriterien 46 5.5 Näherungsweiser Line-Search basierend auf Armijo, ff-Methode 47 6 Ermittlung der nächsten Testschrittweite ffj+1 49 6.1 Die Startschrittweite ffj=1 51 6.2 Verfahren mit konstanten Faktoren 52 6.3 Verfahren mit konstanten Summanden 53 6.4 Verfahren mit quadratischen Polynomen 54 6.5 Verfahren mit kubischen Polynomen 56 6.6 Sektionssuche mit goldenem Schnitt 58 7 Absicherung und Abbruchbedingungen des Line-Search-Verfahrens 60 7.1 Die drei Konvergenzpunkte eines Line-Search-Verfahrens 60 7.1.1 Lokales Minimum in f 60 7.1.2 Algorithmus konvergiert gegen −1 61 7.1.3 Der Winkel zwischen sk und −rfk wird 90° 61 7.2 Weitere Absicherungen 62 7.2.1 Abstiegsrichtung 62 7.2.2 Der gradientenbezogene Schrittvektor 62 7.2.3 Zulässige Schrittweiten in der Extrapolationsphase 63 7.2.4 Intervalle bei der Interpolation 63 7.2.5 Maximale Durchlaufzahlen 63 8 Implementierung 65 8.1 Grundlegende Struktur der Implementierung 65 8.2 Anwendungsgebiete 67 8.2.1 Identifikation der Materialparameter der isotropen Verfestigung und der HILLschen Fließbedingung 67 8.2.2 Optimierung der Form eines Umformwerkzeugs 70 8.3 Test des Programms anhand der Identifikation der Parameter der isotropen Verfestigung und der HILLschen Fließbedingung 71 8.3.1 Einfluss der Funktionsumgebung 71 8.3.2 Test der Line-Search-Verfahrensparameter 74 8.3.3 Einfluss der Startwerte und der Qualität der Ableitungsermittlung 77 8.3.4 Test der Quasi-Newton-Strategien 77 8.3.5 Test der Trust-Region-Skalierung 79 8.3.6 Vergleich der Trust-Region- und der Line-Search-Strategie 80 8.3.7 Tests mit den HILLschen Anisotropieparametern und drei Vorwärtsrechnungen 81 9 Zusammenfassung und Ausblick 83 9.1 Zusammenfassung 83 9.2 Ausblick 84 Liste häufig verwendeter Formelzeichen 85 Literaturverzeichnis 88 A Zusätzliches zur Implementierung 90 A.1 Parametervorschläge für die Line-Search-Verfahren 90 A.2 Fehlercode-Liste 92 A.3 Programmablaufpläne 94 A.3.1 Ablauf in main.cpp 94 A.3.2 Ablauf in OneOptLoop 95 A.3.3 Ablauf während des Trust-Region-Verfahrens 96 A.3.4 Ablauf während des Line-Search-Verfahrens 97 A.4 Steuerung der Optimierungsoptionen über OptInputData.dat 98 A.4.1 Übergeordnete Algorithmen 98 A.4.1.1 Quasi-Newton-Verfahren 98 A.4.1.2 Absichern der positiven Definitheit von Gk 99 A.4.1.3 Auswahl des Optimierungsverfahrens, Auswahl der Schrittweitensteuerung 100 A.4.1.4 Abbruchbedingungen für die Lösungsfindung 100 A.4.1.5 Wahl des Startvektors x0 101 A.4.2 Die Trust-Region-Algorithmen 102 A.4.2.1 Wahl des Anfangsradius 0 des Vertrauensbereichs 102 A.4.2.2 Wahl des Skalierungsverfahrens 102 A.4.2.3 Wahl des Startwertes l=0 für die Regularisierungsparameteriteration 103 A.4.2.4 Regularisierungsparameteriteration 103 A.4.2.5 Wahl des Verfahrens zum Auffrischen des Radius des Vertrauensbereichs 103 A.4.2.6 Bedingungen für einen akzeptablen Schritt 104 A.4.2.7 Absicherungen des Trust-Region-Verfahrens 104 A.4.3 Die Line-Search-Algorithmen 105 A.4.3.1 Die Akzeptanzkriterien 105 A.4.3.2 Die Verfahren zur Extrapolation 105 A.4.3.3 Die Verfahren zur Interpolation 106 A.4.3.4 Verfahren zur Wahl von ffj=2 106 A.4.3.5 Absicherung des Line-Search-Verfahrens 106 B Testrechnungen 107 B.1 Ausgewählte Versuchsreihen 107 B.2 Bilder der Funktionsumgebung der Materialparameteridentifikation 109 B.3 Beschreibung der digitalen Anlagen 112 Eidesstattliche Erklärung und Aufgabenstellung 113
98

Numerische Simulation des viskoplastischen Verhaltens metallischer Werkstoffe bei endlichen Deformationen

Shutov, Alexey 09 May 2014 (has links)
In den letzten Jahrzehnten hat sich auf dem Gebiet der phänomenologischen Metallplastizität eine schleichende Revolution vollzogen. Dank der gestiegenen Rechenleistung, in Kombination mit ausgereiften numerischen Algorithmen, sind viele technisch relevante Problemstellungen einer zuverlässigen numerischen Analyse zugänglich gemacht worden. Beispielsweise ermöglicht die Metallumformsimulation, als häufigste Anwendung der Plastizitätstheorie, eine Analyse des Eigenspannungszustandes und der Rückfederung in plastisch umgeformten Halbzeugen und Bauteilen. Solche Simulationen sind für die Planung energie- und ressourceneffizienter Herstellungsprozesse sowie für die Ausnutzung der plastischen Tragfähigkeitsreserven von großer Bedeutung. Die Crashtest-Simulation ist die zweithäufigste Anwendung, die in der Automobilindustrie und auch zunehmend im Flugzeugbau eingesetzt wird. Aus der Notwendigkeit, das Verhalten metallischer Werkstoffe auf Bauteilebene hinreichend genau zu beschreiben, resultiert die Motivation für eine breit angelegte Studie zur Materialmodellierung. Dabei führt die beträchtliche Anzahl unterschiedlicher Phänomene und Effekte, die berücksichtigt werden müssen, zu einer großen Vielfalt von Materialmodellen. Da die Lösung komplizierter praktischer Probleme mit einem sehr großen numerischen Aufwand verbunden ist, wird der vorteilhafte phänomenologische Zugang bevorzugt. Bei der Konzeption von neuen phänomenologischen Materialmodellen müssen folgende Aspekte beachtet werden: die Genauigkeit bei der Beschreibung des Materialverhaltens; die Stabilität und Robustheit von zugehörigen numerischen Algorithmen; die numerische Effizienz; die zuverlässige Parameteridentifikation für einen möglichst großen Anwendbarkeitsbereich; die Anschaulichkeit und Einfachheit des Materialmodells. Im Allgemeinen stehen diese Anforderungen an ein "gutes Materialmodell" zwar in einem gewissen Widerspruch zueinander, bilden andererseits aber das Grundgerüst für eine systematische Studie. Obwohl sich die vorliegende Arbeit vordergründig an erfahrene Spezialisten im Bereich der Kontinuumsmechanik wendet, sind die darin präsentierten Modelle und Algorithmen auch für praktisch tätige Berechnungsingenieure von Interesse. / In the last decades, a creeping revolution was taking place in the area of the phenomenological metal plasticity. Due to the increased computational power, combined with refined numerical algorithms, many of technically relevant problems are now available for the numerical analysis. In particular, the metal forming simulation is a typical application of the metal plasticity. It enables the analysis of the residual stresses and spring back phenomena in plastically deformed workpieces and components. Such analysis is advantageous for planning of energy and resource-efficient manufacturing and for exploitation of plastic reserves of bearing capacity. The crash test simulation is the second most common application of metal plasticity, highly celebrated in the automotive industry and gaining increasing popularity in the aircraft industry. The need for sufficiently accurate description of metal behaviour on the macroscale motivates wide-ranging studies on material modelling. The large number of different effects and phenomena contributes to the large manifold of material models. The current work deals with the phenomenological approach, due to its great suitability for the solution of practical problems. The following aspects should be taken into account upon the construction of new phenomenological models: the accurate description of the material behaviour, the stability and robustness of the corresponding numerical algorithms, the numerical efficiency, the reliable parameter identification for a sufficiently large application area, the clearness and simplicity of the material models. In general, these requirements imposed on a "good material model" contradict each other. In this work, however, they are complimentary to each other and build a framework for a systematic study. Although this work is written primarily for experts on the continuum mechanics, the presented models and algorithms can be of interest for practically working engineers.
99

Massively Parallel, Fast Fourier Transforms and Particle-Mesh Methods: Massiv parallele schnelle Fourier-Transformationen und Teilchen-Gitter-Methoden

Pippig, Michael 13 October 2015 (has links)
The present thesis provides a modularized view on the structure of fast numerical methods for computing Coulomb interactions between charged particles in three-dimensional space. Thereby, the common structure is given in terms of three self-contained algorithmic frameworks that are built on top of each other, namely fast Fourier transform (FFT), nonequispaced fast Fourier transform (NFFT) and NFFT based particle-mesh methods (P²NFFT). For each of these frameworks algorithmic enhancement and parallel implementations are presented with special emphasis on scalability up to hundreds of thousands of parallel processes. In the context of FFT massively parallel algorithms are composed from hardware adaptive low level modules provided by the FFTW software library. The new algorithmic NFFT concepts include pruned NFFT, interlacing, analytic differentiation, and optimized deconvolution in Fourier space with respect to a mean square aliasing error. Enabled by these generalized concepts it is shown that NFFT provides a unified access to particle-mesh methods. Especially, mixed-periodic boundary conditions are handled in a consistent way and interlacing can be incorporated more efficiently. Heuristic approaches for parameter tuning are presented on the basis of thorough error estimates. / Die vorliegende Dissertation beschreibt einen modularisierten Blick auf die Struktur schneller numerischer Methoden für die Berechnung der Coulomb-Wechselwirkungen zwischen Ladungen im dreidimensionalen Raum. Die gemeinsame Struktur ist geprägt durch drei selbstständige und auf einander aufbauenden Algorithmen, nämlich der schnellen Fourier-Transformation (FFT), der nicht äquidistanten schnellen Fourier-Transformation (NFFT) und der NFFT-basierten Teilchen-Gitter-Methode (P²NFFT). Für jeden dieser Algorithmen werden Verbesserungen und parallele Implementierungen vorgestellt mit besonderem Augenmerk auf massiv paralleler Skalierbarkeit. Im Kontext der FFT werden parallele Algorithmen aus den Hardware adaptiven Modulen der FFTW Softwarebibliothek zusammengesetzt. Die neuen NFFT-Konzepte beinhalten abgeschnittene NFFT, Versatz, analytische Differentiation und optimierte Entfaltung im Fourier-Raum bezüglich des mittleren quadratischen Aliasfehlers. Mit Hilfe dieser Verallgemeinerungen bietet die NFFT einen vereinheitlichten Zugang zu Teilchen-Gitter-Methoden. Insbesondere gemischt periodische Randbedingungen werden einheitlich behandelt und Versatz wird effizienter umgesetzt. Heuristiken für die Parameterwahl werden auf Basis sorgfältiger Fehlerabschätzungen angegeben.
100

Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension

Günnel, Andreas, Herzog, Roland 01 September 2016 (has links)
Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for elasticity problems are introduced. Optimality conditions are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their solution is formulated in function space. Numerical experiments confirm the expected mesh-independent performance.

Page generated in 0.1882 seconds