• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 104
  • 45
  • Tagged with
  • 251
  • 251
  • 49
  • 49
  • 46
  • 46
  • 46
  • 24
  • 22
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

NHC-ligated Nickel(0)-Complexes: Bond Activation, Redox Behavior and Catalysis / NHC-substituierte Nickel(0)-Komplexe: Bindungsaktivierung, Redoxeigenschaften und Katalyse

Tendera, Lukas January 2023 (has links) (PDF)
This thesis describes the synthesis and reactivity of bis-NHC ligated nickel(0)-complexes and their application in catalytic cyclization and borylation reactions of alkynes. The focus of the presented work lies on the investigation of the electronic and steric impact of different NHC ligands on the reactivity and catalytic activity of [Ni(NHC)2] complexes. Since d10 ML2 complexes play a decisive role for numerous catalytic reactions, such as the Suzuki-Miyaura cross-coupling, the first chapter provides an overview about the general properties of NHCs and the chemistry of NHC-ligated nickel complexes, their synthesis, characterization, reactivity, and application in catalysis. / Die vorliegende Arbeit befasst sich mit der Synthese und Reaktivität von zweifach NHC-stabilisierten Nickel(0)-Komplexen sowie deren Anwendung als Katalysatoren in Zyklisierungs- und Borylierungsreaktionen von Alkinen. Der Fokus liegt auf der Untersuchung von elektronischen und sterischen Einflüssen verschiedener NHC-Liganden auf die Reaktivität und katalytische Aktivität von [Ni(NHC)2]-Komplexen. Da solche d10-ML2 Komplexe heute für eine Vielzahl von katalytischen Reaktionen von immenser Bedeutung sind, wie z. B. der Suzuki-Miyaura-Kreuzkupplung, wird im ersten Kapitel ein Überblick über die grundlegenden Eigenschaften von NHCs und die Chemie NHC-substituierter Nickel-Komplexe, deren Synthese, Charakterisierung, Reaktivität und Anwendung in der Katalyse, gegeben.
32

Synthese und Reaktivität spezieller Borheterocyclen / Synthesis and reactivity of special boron heterocycles

Lindl, Felix January 2023 (has links) (PDF)
Die Dissertationsschrift befasst sich mit der Synthese, Charakterisierung sowie Reaktivität spezieller Borheterocyclen und lässt sich in drei Themengebiete gliedern. Der erste Teil behandelt die Reaktivität des elektronisch stabilisierten 1-Ferrocenyl-2,3,4,5-tetraphenylborols gegenüber klassischen Substraten für Ringerweiterungsreaktionen von Borolen. Der zweite Abschnitt beschreibt post-synthetische Funktionalisierungen von 1,2-Azaborininen. Dargestellte Boryl-substituierte 1,2-Azaborinine konnten in BN-analoge Verbindungen von Borafluorenen überführt werden. Ferner gelang die Isolierung eines zweifach BN-substituierten Phenanthrenderivats. Im dritten Teil erfolgt eine kritische Auseinandersetzung mit anerkannten Zusammenhängen der Reaktionen von B-funktionalisierten 2,3,4,5-Tetraphenylborolen gegenüber Diphenylacetylen. / Three topics were addressed in the present work. The first part focused on the reactivity of the electronically stabilized 1-ferrocenyl-2,3,4,5-tetraphenylborole towards typical substrates for ring expansion reactions of boroles. In the second part, post-synthetic functionalizations of 1,2-azaborinines were described, and in the third part, a critical discussion of generally recognized interrelationships of the reactions of B-functionalized 2,3,4,5-tetraphenylboroles with diphenylacetylene was undertaken.
33

Synthese, Charakterisierung und Eigenschaften neuartiger carboranyl-substituierter NHC-Liganden und Anwendung in der Metallkomplex-Chemie / Synthesis, characterisation and properties of novel carboranyl-substituted NHC ligands and application in metal complex chemistry

Weber, Manuel January 2024 (has links) (PDF)
Im Fokus der Dissertation stand die Synthese von Vorstufen (Imidazoliumsalze) für NHC-Liganden sowie die Umsetzung dieser Verbindungen zu N-heterocyclischen Carbenen unter Verwendung des Carba-closo-dodecaborat-Anions. Hierbei wurde der Cluster über die Position B12 oder B7 an das Stickstoffatome des Imidazols gebunden. Zur Synthese wurden unterschiedliche Routen ausgehend von \(Cs[12-I-closo-1-CB_{11}H_{11}]\) und \(12-PhI-closo-1-CB_{11}H_{11}\) sowie den entsprechenden 7-Isomeren untersucht und miteinander verglichen. Die isomerenreinen Synthesen wurden hinsichtlich ihrer Vor- und Nachteile untersucht und so optimiert. Es wurden sowohl unsymmetrische Imidazoliumsalze mit dem Carba-closo-dodecaborat-Anion auf der einen Seite und Alkyl- oder Arylreste (Butyl, Methyl, Phenyl, p-Methoxyphenyl, p-Fluorphenyl-, Vinyl-, Benzyl- und Mesitylsubstituenten) als auch die symmetrische Variante mit zwei Carboranylcluster synthetisiert. Besonders hervorzuheben ist hierbei, dass die Synthese des Bis(1,3-Carboran-12-yl)imidazolatanions in einer Buchwald-Hartwig-Kreuzkupplungsreaktion durch Umsetzung der Reagenzien \(Cs[12-I-closo-1-CB_{11}H_{11}]\) und \(Cs[12-Imidazolyl-closo-1-CB_{11}H_{11}]\) durch 1 zu 1 Umsetzung miteinander reagiert haben. In den meisten bisher literaturbekannten und im Rahmen der Doktorarbeit untersuchten Buchwald-Hartwig-Kreuzkupplungsreaktionen sind 4-14 Äquivalente des Amins notwendig. Darüberhinaus erfordert das Amin häufig eine Aktivierung durch Umsetzung zu Lithiumorganylen. Dies war bei der Umsetzung von \(Cs[12-I-closo-1-CB_{11}H_{11}]\) mit \(Cs[12-Imidazolyl-closo-1-CB_{11}H_{11}] \) nicht notwendig und zeigt den starken elektronenschiebenden Effekt des Clusters auf. Die unsymmetrischen Imidazoliumsalze konnten durch Umsetzung mit n-Butyllithium zu C2-NHC-Derivate umgesetzt werden. Bei der Umsetzung des Bis(1,3-Carboran-12-yl)imidazolatanions bildete sich zunächst ein Gemisch aus dem C2- und C5-Isomer, des Weiteren ist anteilig auch die Deprotonierung am Clusterkohlenstoffatom aufgetreten. / The dissertation focused on the synthesis of precursors (imidazolium salts) for NHC ligands and the conversion of these compounds to N-heterocyclic carbenes using the carba-closo-dodecaborate anion. Here, the cluster was attached to the nitrogen atom of the imidazole via the B12 or B7 position. For synthesis, different routes starting from \(Cs[12-I-closo-1-CB_{11}H_{11}]\) and \(12-PhI-closo-1-CB_{11}H_{11}\) as well as the corresponding 7-isomers were investigated and compared. The isomerically pure syntheses were investigated with respect to their advantages and disadvantages and thus optimised. Both asymmetric imidazolium salts with the carba-closo-dodecaborate anion on one side and alkyl or aryl residues (butyl, methyl, phenyl, p-methoxyphenyl, p-fluorophenyl, vinyl, benzyl and mesityl substituents) and the symmetric variant with two carboranyl clusters were synthesised. Of particular note here is that the synthesis of the bis(1,3-carboran-12-yl)imidazolate anion was achieved in a Buchwald-Hartwig cross-coupling reaction by reacting the reagents \(Cs[12-I-closo-1-CB_{11}H_{11}]\) and \(Cs[12-imidazolyl-closo-1-CB_{11}H_{11}]\) by 1 to 1 reaction. In most of the Buchwald-Hartwig cross-coupling reactions known so far in the literature and investigated in the doctoral thesis, 4-14 equivalents of the amine are required. Furthermore, the amine often requires activation by conversion to lithium organyls. This was not necessary in the reaction of \(Cs[12-I-closo-1-CB_{11}H_{11}]\) with \(Cs[12-imidazolyl-closo-1-CB_{11}H_{11})\), demonstrating the strong electron-pushing effect of the cluster. The unsymmetrical imidazolium salts could be converted to C2-NHC derivatives by reaction with n-butyllithium. During the reaction of the bis(1,3-carboran-12-yl)imidazolate anion, a mixture of the C2 and C5 isomer was initially formed, and furthermore, deprotonation also occurred proportionally at the cluster carbon atom.
34

Synthese und Charakterisierung neuartiger siliciumhaltiger Synthesebausteine / Synthesis and characterization of novel silicon building blocks

Laskowski, Nadine January 2014 (has links) (PDF)
Die vorliegende Arbeit beschreibt die Synthese von linearen und verzweigten funktionalisierten siliciumhaltigen Synthesebausteinen unter Verwendung der 2,4,6-Trimethoxyphenyl-Schutzgruppe sowie die Synthese cyclischer siliciumhaltiger Synthese-bausteine unter Verwendung eines Donor-stabilisierten Silylens. Diese Forschungsarbeit leistet daher sowohl einen Beitrag zur Schutzgruppenchemie des Siliciums als auch zur Chemie des nieder- bzw. höhervalenten Siliciums. Alle Zielverbindungen sowie die entsprechenden isolierten Vorstufen wurden durch NMR-Spektroskopie in Lösung (1H-, 13C- und 29Si-NMR) und Elementaranalysen (C, H, N; außer 15 und 16) charakterisiert. Die Verbindungen 34, 36, 41, 42, 45, 48, 52, 54 und 55 wurden zusätzlich durch NMR-Spektroskopie im Festkörper (13C-, 15N- und 29Si-VACP/MAS-NMR) untersucht, und die Verbindungen 1–6, 9, 18, 25, 29, 34, 36, 41, 42, 45, 48, 52, 54 und 55 wurden außerdem durch Einkristall-Röntgenstrukturanalyse charakterisiert. / This thesis describes the synthesis of linear and branched Si-functionalized building blocks by using the 2,4,6-trimethoxyphenyl protecting group as well as the synthesis of cyclic silicon-containing building blocks by using a donor-stabilized silylene. Thus, this research project contributes to both the chemistry of silicon protecting groups and the chemistry of high/low-valent silicon. The identities of all target compounds and their isolated precursors were established by NMR spectroscopic studies in solution (1H, 13C, and 29Si NMR) and elemental analyses (C, H, N; except 15 and 16). In addition, compounds 34, 36, 41, 42, 45, 48, 52, 54, and 55 were studied by NMR spectroscopy in the solid state (13C, 15N, and 29Si VACP/MAS NMR), and compounds 1–6, 9, 18, 25, 29, 34, 36, 41, 42, 45, 48, 52, 54, and 55 were additionally characterized by single-crystal X-ray diffraction.
35

Synthese und biologische Charakterisierung neuartiger siliciumorganischer Wirkstoffe sowie Synthese neuartiger siliciumorgansicher Synthese-Bausteine / Synthesis and biological characterization of new silicon-containing drugs and synthesis of new silicon-containing building blocks for synthesis

Geyer, Marcel January 2015 (has links) (PDF)
Aufbauend auf dem Konzept der C/Si-Bioisosterie beschreibt die vorliegende Arbeit die Synthese und biologische Charakterisierung siliciumorganischer Wirkstoffe sowie Beiträge zur Synthese von siliciumorganischen Synthese-Bausteinen unter Verwendung der Silicium-Schutzgruppen MOP (4-Methoxyphenyl), DMOP (2,6-Dimethoxyphenyl) und TMOP (2,4,6-Trimethoxyphenyl). Die entsprechenden Zielverbindungen sowie alle isolierten Zwischenstufen wurden durch NMR-Spektroskopie in Lösung (1H, 13C, 29Si) und Elementaranalyse (C, H, N) bzw. HRMS-Analytik (ESI) charakterisiert. Zusätzlich konnte in einigen Fällen eine strukturelle Charakterisierung durch Einkristall-Röntgenstrukturanalyse realisiert werden. / Based on the concept “C/Si bioisosterism”, this doctoral thesis describes the synthesis and pharmacological characterization of silicon-containing drugs as well as contributions to the synthesis of silicon-containing building blocks containing the silicon protecting groups MOP (4-methoxyphenyl), DMOP (2,6-dimethoxyphenyl), and TMOP (2,4,6-trimethoxyphenyl). The identities of the respective target compounds and their isolated intermediates were established by NMR spectroscopic studies (1H, 13C, 29Si) and elemental analyses (C, H, N) or HRMS studies (ESI). In some cases, an additional characterization by single-crystal X-ray diffraction was performed.
36

Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe / Syntheses, Structure and Properties of new Silicon(II) and Silicon(IV) Complexes

Baus, Johannes Armin January 2016 (has links) (PDF)
Die vorliegende Arbeit stellt einen Beitrag zur Chemie höherkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgeführten Untersuchungen betraf das Studium der Reaktivität der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5–9 wurden bereits früher synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bezüglich ihrer Moleküldynamik in Lösung untersucht. Die Verbindungen 5–10 zeigten in Lösung bei Raumtemperatur unterschiedlich stark ausgeprägte Dynamikphänomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekundären Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Gerüst. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Gerüst wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Moläquivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-Übergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden Übergangsmetalldibromiden bzw. Nickel(II)-bromid–1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte Übergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es für d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das Übergangsmetallatom miteinander verbrückt, was zur Ausbildung einer spirocyclischen Struktur führt. Der neutrale, pentakoordinierte Zink–Silylen-Komplex 25 wurde in einer Lewis-Säure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22–24 als ein Lewis-Säure/Base-Addukt verstehen lässt, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repräsentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)–Silylen-Komplex überhaupt. Verbindung 28 wurde durch Umsetzung von drei Moläquivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Moläquivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Moläquivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 übertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zunächst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert. / This thesis represents a contribution to the chemistry of higher-coordinate silicon(II) and silicon(IV) compounds. A major part oft he investigations performed concerned reactivity studies with the donor-stabilised silylenes 1 and 2. The following subprojects were carried out: The neutral six-coordinate silicon(IV) compound 10 and the ionic five-coordinate silicon(IV) compound 11 were synthesised via transsilylation reactions by treatment of 5 (the chloro analogue of 10) with Me3SiBr and Me3SiI, respectively. The derivatives of 10, compounds 5–9, were already synthesised before and were investigated in this study for the first time (together with 10) for their molecular dynamics in solution. Compounds 5–10 showed interesting dynamic phenomena in solution at ambient temperature, which were studied by VT NMR experiments. The neutral six-coordinate silicon(IV) complexes 12 and 16 were synthesised by sequential treatment of the respective secondary amine Ph2NH and iPr2NH, respectively, with n-butyl¬lithium and carbon disulfide and subsequent treatment with tetrachlorosilane and were isolated as the acetonitrile solvates 12·MeCN and 16·MeCN, respectively. Compounds 12 and 16 represent the first six-coordinate silicon(IV) complexes with an SiS4Cl2 skeleton. The neutral six-coordinate silicon(IV) compound 17 with an SiS4Cl2 skeleton was synthesised by treatment of silylene 2 with chlorine. In contrast to this oxidative addition, the synthesis of 17 by treatment of tetrachlorosilane with two molar equivalents of the respective lithium guanidinate [iPrNC(NiPr2)NiPr]Li failed. Instead, the corresponding five-coordinate mono(guanidinato)silicon(IV) complex with three chloro ligands was obtained. Treatment of 1,2-diphenylethyne with silylene 1 furnished the neutral six-coordinate silicon(IV) complex 19. The neutral five-coordinate silicon(IV) complex 20 was synthesised in a redox reaction by treatment of silylene 2 with dimanganesedecacarbonyl. In this reaction, the silicon(II) fragment was oxidised to a silicon(IV) fragment and the dimanganese moiety was reduced, accompanied by loss of two carbonyl ligands. The neutral four-coordinate transition-metal–silicon(II) complexes 22, 23 and 24 (isolated as 24·THF) were synthesised by treatment of silylene 2 with the respective transition-metal dibromides and the nickel(II)-bromide 1,2-dimethoxyethane adduct, respectively. In case of nickel, the treatment with free NiBr2 was not successful. Compounds 22 and 23 represent paramagnetic complexes with tetrahedrally coordinated transition metal atoms. In contrast, the nickel atom of 24·THF is coordinated in a square-planar fashion, resulting in diamagnetism as expected for d8 metals. The three compounds 22, 23 and 24·THF have the special binding mode of one of the two guanidinato ligands in common; which bridges the silicon atom and the transition metal, resulting in a spirocyclic structure. The neutral five-coordinate zinc–silylene complex 25 was synthesised in a Lewis acid/base reaction by treatment of silylene 2 with zinc(II)-bromide and isolated as the solvate 25·0.5Et2O. Although the product of this reaction can be understood as a Lewis acid/base adduct (as in the case of compounds 22, 23 and 24·THF) the coordination mode of 25·is different: both guanidinato ligands bind in a bidentate fashion to the silicon atom. The neutral bis(silylene)palladium(0) and bis(silylene)platinum(0) complexes 28 and 29, respectively, represent the first homoleptic two-coordinate bis(silylene) complexes of these metals with N-heterocyclic silylene ligands, and the platinum(0) complex is even the first homoleptic two-coordinate silylene–platinum(0) complex at all. Compound 28 was prepared by treatment of three molar equivalents of silylene 2 with the palladium(II) complex [PdCl2(SMe2)2]. In this reaction, one molar equivalent of the silylene reduces the palladium(II) complex and is oxidised itself to compound 17, and the remaining two molar equivalents of silylene 2 substitute the dimethylsulfide ligands at the palladium atom. However, the same synthetic strategy could not be applied to the preparation of compound 29. Obviously, the reduction potential of silylene 2 was sufficient in this case. For the preparation of 29, the platinum(II) complex [PtCl2(PiPr3)2] was reduced by sodium/naphthalene, followed by substitution of the two triisopropylphosphine ligands by two silylene 2 ligands.
37

Beiträge zur Chemie schwach koordinierender Cyanoborat- und Fluorophosphat-Anionen / Chemistry of weakly coordinating cyanoborate and fluorophosphate anions

Drisch, Michael January 2019 (has links) (PDF)
Zusammenfassung Synthetisch einfach zugängliche, thermisch und chemisch robuste schwach oder mittelstark wechselwirkende Anionen sind wichtige Bausteine für neue Materialien wie zum Beispiel ionische Flüssigkeiten und Li-Leitsalze. Im Rahmen der vorliegenden Arbeit wurden zum einen neue schwach koordinierende Borat- und Pentafluorophosphat-Anionen entwickelt und zum anderen effiziente Synthesen zu bereits bekannten Cyanoborat-Anionen ausgearbeitet. Aufgrund ihrer interessanten Eigenschaften wie niedriger Viskosität und elektrochemischer Stabilität wird der Einsatz von ionischen Flüssigkeiten mit dem [BH(CN)3]−-Anion seit längerer Zeit intensiv untersucht. Ausgehend von Na[BH4] wurde eine äußerst effiziente Synthese zu K[BH(CN)3], die auch für den molaren Maßstab geeignet ist, entwickelt. Die Synthese verläuft über Tricarboxylatohydridoborate als Zwischenstufen, welche sich bei vergleichsweise niedrigen Temperaturen von 60 °C weiter mit TMSCN und TMSCl (Kat.) zum [BH(CN)3]−-Anion cyanieren lassen. Durch schrittweise Cyanierung mit TMSCN, ohne den Einsatz eines Lewis-Säure-Katalysators wie TMSCl, wurden die Carboxylatocyanoborate M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) und M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) synthetisiert und zum Teil strukturell charakterisiert. [EMIm][BH(CN)2(OC(O)Et)] ist eine bei Raumtemperatur flüssige ionische Flüssigkeit mit einem Schmelzpunkt von −78 °C. Die dynamische Viskosität ist mit 44.81 mPa∙s bei 20 °C etwa vier Mal so hoch wie die von [EMIm][BH(CN)3] mit 12.36 mPa∙s. Ausgehend von den nun in sehr guten Ausbeuten und in hohen Reinheiten zugänglichen Cyanohydridoboraten wurden verschiedene Fluorierungsmethoden untersucht, um daraus Cyanofluoroborate zu synthetisieren. So wurde K[BF(CN)3] ausgehend von K[BH(CN)3] über direkte Fluorierung mit F2 in aHF oder F-TEDA, XeF2 sowie (Et2N)SF3 in Acetonitril synthetisiert. K[BH(CN)3] reagiert in aHF in Gegenwart von Fluor jedoch nicht selektiv zu K[BF(CN)3]. Es kommt zur teilweisen Addition eines HF-Moleküls an eine Cyanogruppe, welche nach wässriger Aufarbeitung K[BF(CN)2(C(O)NH2)] liefert. Die Säureamid-Gruppe lässt sich aber anschließend mit COCl2 leicht entwässern, sodass K[BF(CN)3] selektiv erhalten wird. Ebenfalls ist eine indirekte Fluorierung durch vorheriges Umsetzen eines entsprechenden [BH(CN)3]− Borats mit Cl2 oder Br2 und nachfolgender Fluorierung mit Et3N∙3HF möglich. Die gezeigten Fluorierungen wurden ebenfalls auf weitere Hydridoborate übertragen. Na[BH(CN)2(OC(O)Et)] wurde unter Erhalt der Propoxylato-Gruppe in einer Eintopfsynthese mit Br2 und Et3N∙3HF zu Na[BF(CN)2(OC(O)Et)] fluoriert. K[BF(CN)3] konnte ausgehend von K[BH(CN)3] ebenfalls mit Hilfe der elektrochemischen Fluorierung (ECF, Simons-Prozess) im Gramm-Maßstab hergestellt werden. Dabei gelang die erste Fluorierung einer B−H-Spezies mit dem Simons-Prozess überhaupt. Bei der ECF von K[BF(CN)3] wurden bei fortschreitender Reaktionsdauer NMR-spektroskopisch verschiedene CF3-Borate beobachtet. Während der ECF kommt es also teilweise zu einer C≡N-Bindungsspaltung. Die Fluorierung von CN-Gruppen mit ClF zu CF3-Gruppen wurde ebenfalls auf eine Reihe weiterer Borate angewendet. So wurden K[(C2F5)B(CF3)3] und K[(C2F5)BF(CF3)2] ausgehend von K[(C2F5)B(CN)3] und K[(C2F5)BF(CN)2] synthetisiert und mit einigen Zwischenstufen NMR-spektroskopisch charakterisiert. Neben Boraten sind besonders Salze von schwach koordinierende Phosphat-Anionen wie Li[PF6] für elektrochemische Anwendungen von Interesse. Auf Basis von verschiedenen aminverbrückten Phosphonsäuren wurden neuartige Salze mit mehrfach negativ geladenen Oligo-Phosphat-Anionen synthetisiert. {((HO)2(O)PCH2)2NCH2}2 und ((HO)2(O)PCH2)3N reagieren mit wasserfreiem Fluorwasserstoff zu den entsprechenden Oligo-Pentafluorophosphat-Anionen [{(F5PCH2)2NHCH2}2]2− und [(F5PCH2)2NH]2−. Die verbrückenden Stickstoffatome werden dabei protoniert, was zu zweifach negativ geladenen Phosphat-Anionen führt. Unterschiedliche Salze mit organischen und anorganischen Kationen wurde so isoliert. Weitere Salze, wie das [Ph3C]-, [EMIm]- oder das Li-Salz, wurden durch Metathesereaktionen erhalten. Das Stickstoffatom in -Position zum Phosphoratom scheint essenziel für die Fluorierung der Phosphonsäure-Gruppe mit aHF zu einer PF5-Gruppe zu sein. Dies wurde durch die Umsetzung anderer funktionalisierter Phosphonsäuren wie z.B. (HO)2(O)PMe bestätigt, da es dabei nur zu einer Teilfluorierung zum F2(O)PMe kam. Die Kalium-Salze K2[{(F5PCH2)2NHCH2}2] und K2[(F5PCH2)3NH] lassen sich mit KH in DMF deprotonieren und so Salze mit den dreifach bzw. vierfach negativ geladenen Anionen [{(F5PCH2)2NCH2}2]4− und [(F5PCH2)3N]3− erhalten. K4[{(F5PCH2)2NCH2}2] und K3[(F5PCH2)2N] sind hydrolyseempfindlich und werden leicht protoniert. Die deprotonierten Anionen können jedoch mit Methyliodid oder Allyliodid weiter umgesetzt und so funktionalisiert werden. Das methylierte bzw. allylierte Stickstoffatom sorgt für eine deutliche Stabilisierung der Anionen. So steigt zum Beispiel die Zersetzungstemperatur von K2[{(F5PCH2)2N(CH3)CH2}2] im Vergleich zu K2[{(F5PCH2)2NHCH2}2] um über 100 °C auf 300 °C. Des Weiteren steigt auch die Stabilität gegenüber Hydrolyse bei Salzen mit den methylierten Phosphat-Anionen deutlich an. K2[{(F5PCH2)2NHCH2}2] wird nach einigen Minuten in H2O langsam hydrolisiert. Dagegen ist K2[{(F5PCH2)2N(CH3)CH2}2] mehrere Tage sowohl wasser- als auch basenstabil. Das durch eine Metathesereaktion von Li[BF4] mit K2[{(F5PCH2)2N(CH3)CH2}2] erhaltene Li2[{(F5PCH2)2N(CH3)CH2}2] hat in -Butyrolacton eine Leitfähigkeit von 2.67 mS∙cm−1 (c = 0.1 mol∙L−1). Einige Oligo-Pentafluorophosphate wurden ebenfalls strukturanalytisch charakterisiert. / Summary Weakly or moderately coordinating anions which are synthetically easily accessible and thermally and chemically robust are important building blocks for new materials such as ionic liquids or Li-conducting salts. Within the scope of the present work, new weakly coordinating borate and pentafluorophosphate anions were developed and efficient syntheses for already known cyanoborate anions were developed. Due to their interesting properties such as low viscosity and electrochemical stability, the use of ionic liquids with the [BH(CN)3]− anion has been extensively investigated for a long time. Starting from Na[BH4], a very efficient synthesis for K[BH(CN)3], which is also suitable for the molar scale, has been developed. The synthesis proceeds via tricarboxylatohydridoborates as intermediates, which can be cyanated with TMSCN and TMSCl (cat.) to the [BH(CN)3]− anion at a relatively low temperature of 60 °C. The carboxylatocyanoborates M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) and M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) were synthesized by stepwise cyanation with TMSCN of the tricarboxylatohydridoborates without using a Lewis acid catalyst. Some of the carboxylatocyanoborates were structurally characterized. [EMIm][BH(CN)2(OC(O)Et)] is an ionic liquid and liquid at room temperature with a melting point of −78 °C. Its dynamic viscosity at 20 °C is 44.81 mPa∙s, which is about four times higher than the one of [EMIm][BH(CN)3] with 12.36 mPa∙s. Various fluorination methods were investigated in order to synthesize cyanofluoroborates starting from the cyanohydridoborates which are now available in very good yields and in high purities. K[BF(CN)3] was obtained by direct fluorination with F2 in aHF or F-TEDA, XeF2, and (Et2N)SF3 in acetonitrile. K[BH(CN)3] reacts in aHF in the presence of fluorine non-selectively to K[BF(CN)3], and one HF molecule adds to single cyano group, which provides K[BF(CN)2(C(O)NH2)] after aqueous work-up. The carboxamide group can be easily dehydrated with COCl2 to give K[BF(CN)3] selectively. An indirect fluorination is possible as well. In the first step the the [BH(CN)3]− borate is reacted with Cl2 or Br2 and subsequent fluorination with Et3N∙3HF yields [BF(CN)3]−. The new fluorination reactions were applied to other hydridoborates. Na[BH(CN)2(OC(O)Et)] was fluorinated while retaining the propoxylato group in a one pot synthesis with Br2 and Et3N∙3HF to give Na[BF(CN)2(OC(O)Et)]. Starting from K[BH(CN)3], K[BF(CN)3] was also prepared by means of electrochemical fluorination (ECF, Simons process) on a gram scale. With this process the first fluorination of a B−H species according to the Simons process was achieved. The ECF of K[BF(CN)3] gives several CF3 borates when longer reaction times were applied as shown by NMR spectroscopy. Thus the ECF leads to a partial C≡N bond cleavage. Similar transformation have been reported for M[B(CN)4] (M = Li+, Na+, K+) and ClF or ClF3 to give M[B(CF3)4].[24] The fluorination of CN groups with ClF to CF3 groups has also been adopted for a range of other borates. For example, K[(C2F5)B(CF3)3] and K[(C2F5)BF(CF3)2] were synthesized from K[(C2F5)B(CN)3] and K[(C2F5)BF(CN)2] and together with some intermediates these borate anions were characterized by NMR spectroscopy. In addition to borates, salts of weakly coordinating phosphate anions such as Li[PF6] are of particular interest for electrochemical applications. On the basis of various amine-bridged phosphonic acids, novel salts were synthesized with multiple negatively charged oligo-phosphate anions. {((HO)2(O)PCH2)2NCH2}2 and ((HO)2(O)PCH2)3N react with anhydrous hydrogen fluoride to the corresponding oligo-pentafluorophosphate anions [{(F5PCH2)2NHCH2}2]2− and [(F5PCH2)2NH]2−. The bridging nitrogen atoms are protonated, during the reaction, which leads to double negatively charged phosphate anions. Different salts with organic- and inorganic cations were isolated. Other salts such like the [Ph3C], [EMIm], or the Li salt were obtained by metathesis reactions. The nitrogen atom in -position to the phosphorus atom seems to be essential for the fluorination of the phosphonic acid group with aHF to a PF5 group. This assumption was proven by reacting other functionalized phosphonic acids, e.g. (HO)2(O)PMe, that showed only partial fluorination to F2(O)PMe. The poassium salts K2[{(F5PCH2)2NHCH2}2] and K2[(F5PCH2)3NH] were deprotonated with KH in DMF to obtain salts with the triple or quadruple negatively charged anions [{(F5PCH2)2NCH2}2]4− and [(F5PCH2)3N]3−. K4[{(F5PCH2)2NCH2}2] and K3[(F5PCH2)2N] are sensitive to hydrolysis and were easily protonated. However the deprotonated anions can be further reacted with methyl iodide or allyl iodide and thus functionalized. The methylated or allylated nitrogen atom ensures a significant stabilization of the anions. For example, the decomposition temperature of K2[{(F5PCH2)2N(CH3)CH2}2] increases by 100 °C to 300 °C compared to K2[{(F5PCH2)2NHCH2}2]. Furthermore, the stability of salts with the methylated phosphate anions towards hydrolysis increases significantly, also K2[{(F5PCH2)2NHCH2}2] is slowly hydrolyzed after a few minutes in H2O. On the other hand, K2[{(F5PCH2)2N(CH3)CH2}2] is water- and base-stable for several days. During a methatesis reaction of Li[BF4] with K2[{(F5PCH2)2N(CH3)CH2}2] the obtained Li2[{(F5PCH2)2N(CH3)CH2}2] has a conductivity of 2.67 mS∙cm−1 in -Butyrolacton (c = 0.1 mol∙L−1). Some oligo-pentafluorophosphates were also characterized by X-ray crystallography.
38

Reaktivität niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme / Reactivity of low-valent, carbene-stabilized boron-boron multiple bonds

Böhnke, Julian January 2019 (has links) (PDF)
Im Rahmen dieser Arbeit war es möglich, vielfältige Reaktivitäten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. Häufig begründet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungewöhnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-Fähigkeiten und der hohen π-Acidität der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivitätsstudien mit den entsprechenden NHC-stabilisierten Bor–Bor-Mehrfachbindungssystemen wider. Zunächst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgeführt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungslängen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zugänglichkeit für die Reaktivitätsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollständige, oxidative Spaltung der Bor–Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten größeren Teilbereich dieser Arbeit dar. Durch die enorme π-Rückbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Im weiteren Verlauf konnte ein Mechanismus für die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) – einer Spezies, die für die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde – unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei Äquivalenten tert-Butylisocyanid führte zur Bildung eines Bis(boraketenimins). Ähnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-Rückbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Die Thermolyse der Verbindung führte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: Während ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung führt und potentiell hochinteressante Reaktivitäten ermöglicht. So führte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B–B-Bindung und Insertion eines µ2-gebundenen CO-Moleküls in die BB-Einheit. Die Tatsache, dass ein ähnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten Fähigkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivität des Diborakumulens 7 gegenüber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das Rühren von 7 unter einer H2-Atmosphäre führte zur 1,2-Addition des H2-Moleküls an die B2-Einheit unter Ausbildung eines trans-ständigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidität der CAAC-Liganden über das gesamte C–B–B–C-Grundgerüst delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgeführt, um eine Hydridabstraktion aus dem Lösungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielfältige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu begünstigen, führte zur Ausbildung verschiedener Tautomere. Während das Produkt aus der formalen Addition und Insertion von zwei CO-Molekülen (24) lediglich unter CO-Atmosphäre stabil war, konnte unter Argonatmosphäre ein Tautomerengemisch von 25 mit intakter Bor–Bor-Bindung und einer Boraketeneinheit isoliert werden. Während dieser Prozess vollständig reversibel war, führte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Darüber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollständigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosphären, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen ermöglichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen führte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchgängig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark ähnelte. Eine weitere Umsetzung von 22 mit zwei Äquivalenten Diphenyldisulfid führte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivitätsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molekülen führte zur Ausbildung einer Spezies mit einer Boraketenfunktionalität und einem Borsäureesterderivat (30). Für die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion über eine ungewöhnliche, sukzessive [2+1]-Cycloaddition an die koordinativ ungesättigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton führte zur Ausbildung eines fünfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbrückter Bor–Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Brückner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsführung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. Während das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, führten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. Für 31 konnte darüber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander überführt werden konnte. Die Reaktion des Diborakumulens mit Münzmetallhalogeniden ergab für die Umsetzung von 7 mit drei Äquivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-förmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem Äquivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilität, sodass sich nach einem Zeitraum von 24 Stunden bei erhöhter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-Säure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren Äquivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zunächst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor–Bor-Bindung besitzt. Die Reaktion von 34 gegenüber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments führt hier zu einer erheblichen π-Rückbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen für die CO-Schwingung in einer derartigen Funktionalität aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff führte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor–Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verhältnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor–Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundgerüst, C–C- und B–C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols ähneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der Übergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor–Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen ermöglichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an Übergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 möglich war. Die Ausbildung eines quinoiden Systems führte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 Äquivalenten Zirkoniumtetrachlorid führte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang darüber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen für [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche Rückbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant höhere Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als überaus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivitätsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit beschäftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid führte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor–Bor-Mehrfachbindung. Während die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor–Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben für 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten darüber hinaus zeigen, dass die Singulett-Zustände der synthetisierten Diborene stabiler als die Triplett-Zustände sind und dass die Triplett-Zustände der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zustände sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verständnis dieser Verbindungsklasse. / Within the scope of this work, various reactivities of the diboracumulene 7 and derivatives thereof were investigated. Induced by the exceptional electronic properties of the applied CAAC ligands, unprecedented and exceptional binding modes of low-valent boron species have been observed. The influence of the strong σ-donor properties and the pronounced π-acidity of the cyclic (alkyl)(amino)carbenes is reflected in comparative reactivity studies with the respective NHC-stabilized boron–boron multiple bonded systems. Initially the synthesis of further diboracumulenes was attempted and realized with a bis(CAACCy)-stabilized B2 unit (12). With comparable 11B NMR shifts and similar bond lengths, the compound does not significantly differ in terms of its electronic properties from B2(CAAC)2 (7), which was used in the reactivity studies due to its superior accessibility. Fundamental studies on the redox properties of B2(CAAC)2 showed the complete oxidative cleavage of the boron–boron bond with chlorine gas while forming a CAAC-stabilized boron trichloride fragment. Research on the bis(boraketene) 17 and the synthesis of the bis(boraketeneimine) 18 through the treatment of the diboracumulene 7 with carbon monoxide and suitable isocyanides represents the first major section of this work. Due to the strong π-backbonding into the CAAC ligands and the CO ligands from the electron rich B2 unit, the B–B bond of 17 is significantly elongated and the π-frameworks are mutually orthogonal. By means of DFT calculations the reaction pathway could be investigated, which shows high energetic barriers for the conversion of 17 to the bis(boralactone), a species that was observed for the NHC-stabilized boron–boron multiple bonds. In this way the electronic and structural differences between diborynes and the diboracumulene 7 could be evaluated under defined reaction conditions for the first time. The reaction of 7 with two equivalents of tert-butyl isocyanide led to the formation of a bis(boraketeneimine). Comparable to the bis(boraketene), 18 shows strong π-backbonding into the isocyanide ligands, which is concomitant with an elongated B–B bond and orthogonally oriented boraketeneimine moieties. Thermolysis of the compound led to the elimination of two tert-butyl radicals and formation of the first structurally characterized dicyanodiborene (20). The dicyanodiborene shows a structural peculiarity: While one CAAC ligand is in conjugation with the π-system of the B2 unit, the second one shows an orthogonal orientation to the π-framework, which presumably results in polarization of the B=B double bond and potentially enables highly interesting reactivity. Thus, the addition of carbon monoxide to 20 led to the splitting of the B–B bond and the insertion of a µ2-bound CO molecule into the B2 unit. The fact that similar reactivity is only known from the CAAC-stabilized dihydrodiborene 22 (vide infra) clearly demonstrates the exceptional properties of CAACs to stabilize highly reactive, low-valent main group compounds. The reactivity of the diboracumulene 7 towards dihydrogen represents another major section of this work. When 7 was stirred under a H2 atmosphere the H2 molecule was added across the B2 unit in a 1,2-addition, leading to the formation of a base-stabilized trans dihydrodiborene. In contrast to the dicyanodiborene, 22 is C2 symmetric and the π-system in the HOMO is delocalized over the whole C–B–B–C framework due to the π-acidity of the CAAC ligands. The hydrogenation was also carried out with pure D2 to rule out hydrogen abstraction from the solvent. DFT calculations also classified the boron-bound hydrogens as hydrides and determined the mechanism of the dihydrogen addition to the B2 unit. With a calculated exothermic reaction pathway, the reaction from 7 to 22 represents the first example of an uncatalyzed hydrogenation of a homodinuclear multiple bond of the second row. In this work the CAAC-stabilized dihydrodiborene 22 showed diverse binding modes when treated with carbon monoxide. Among other outcomes, the propensity to promote 1,2-hydrogen shifts from adjacent BH-moieties to the carbene carbon atom led to the formation of various tautomers. While the product of the formal addition and insertion of two CO molecules was only stable under a CO atmosphere (24), under argon atmosphere two tautomers of 25 with a boron–boron bond and boraketene unit could be isolated. This process was found to be completely reversible. However, heating of 25 led to the formation of an alkylidene borane 26 which also exists in two tautomers. Furthermore, the formation of another species in low yields from the complete splitting of a CO fragment and the formation of an intramolecular C≡C triple bond could be observed. VT-NMR and correlation experiments, crystallizations under different atmospheres, vibrational spectroscopy, as well as determination of the reaction pathway by means of DFT calculations, enabled a deep and detailed insight into the underlying processes. The reaction of the dihydrodiborene 22 with acetylene under thermal conditions did not lead to the expected cycloaddition across the B=B double bond but to the insertion of acetylene into it. The obtained product 28 showed a C2 symmetric structure with sp2-hybridized carbon and boron centers along the major axis. A DFT study showed a conjugated π-system which closely resembles the of 1,3,5-hexatriene. Another reaction of 22 with two equivalents of diphenyl disulfide yielded the splitting of the B=B double bond and the formation of a CAAC-stabilized sp3-hybridized monoborane. In two other reactivity studies the diboracumulene could be selectively reacted with carbon dioxide and acetone. The reaction of B2(CAAC)2 with two CO2 molecules led to the formation of a species with a boraketene functionality and a boronic ester group (30). There are no reported examples of the activation of carbon dioxide with apolar multiple bonds, which is why the reaction pathway was investigated by DFT calculations. The reaction proceeds via an unusual successive [2+1] cycloaddition to the coordinatively unsaturated boron atoms with the whole process being strongly exergonic. The reaction of 7 with acetone led to the formation of a five-membered heterocycle with a C=C double bond and an unsymmetrically bridged boron–boron bond with a µ2 hydride orthogonal to the heterocycle. Interestingly, a comparative study from Tobias Brückner with a SIDep-stabilized diboryne and analogous reactions conditions resulted in the 1,2-enol addition product so that the underlying reaction pathway was also investigated. While the 1,2-enol addition product can be described as an intermediate on the way towards 31, moderate energetic barriers and a noticeably exergonic reaction pathway led to a double acetone activation when using the diboracumulene. 31 also showed a mixture of two isomers that could not be interconverted after formation. The reaction of B2(CAAC)2 with (Me2S)CuCl led to a T-shaped coordination of three CuCl fragments to the B2 unit. If treated with one equivalent IMeMe, the diboracumulene showed the formation of the heteroleptic substituted mono base adduct 34. Due to its thermal lability, after 24 hours at elevated temperature the selective formation of a C–H activation product was observed. The same product (35) could be obtained within minutes after addition of a Lewis acid (gallium trichloride) to 34 at room temperature. The addition of another equivalent of IMeMe to 34 led to the formation of the bis(IMeMe) adduct of the diboracumulene 36, which was reminiscent of the bis(CO) adduct 17 and features a strongly elongated B–B bond due to the steric strain in the system. The reaction of 34 towards carbon monoxide resulted in the formation of the heteroleptic base adduct 37. The electron rich boron atom of the boraketene fragment induces strong π-backdonation into the CO ligand, resulting in the lowest observed CO stretch for such a functionality. A final reactivity test of the monobase adduct 34 was carried out with dihydrogen, which led to the spontaneous hydrogenation of both boron atoms and the splitting of the boron–boron bond. The reaction mixture showed two species in a 1:1 ratio: a CAAC-stabilized BH3 fragment 39 and a twofold base-stabilized BH-borylene 38. The splitting of a boron–boron (multiple) bond to access heteroleptic Lewis-base-stabilized borylenes provides a novel approach towards this class of compounds. A large part of this work concerns with the synthesis and reactivity of diborabenzene derivatives. When treating the diboracumulene 7 with acetylene, the formation of a CAAC-stabilized 1,4-diborabenzene could be observed. The planar framework, C–C and B–C bonds within the area of (partial) double bonds, strongly deshielded protons of the central B2C4H4 heterocycle, frontier orbitals that resemble those of benzene as well as negative NICS values represent 42 as a 6π-aromatic system. Due to its tremendously energetically destabilized HOMO, the compound was capable to be used as an electron rich ligand in transition metal chemistry (vide infra). The reactions of B2(CAAC)2 with propyne and 2-butyne led to the formation of 2π-aromatic, paramagnetic compounds with a butterfly shape from the [2+2] cycloaddition to the boron–boron-bond followed by a rearrangement to the thermodynamically more stable 1,3-diboretes. The thermally induced reaction of 40 and 41 with acetylene enabled the formation of the methyl-substituted 1,4-diborabenzene derivatives 43 and 44. To evaluate the properties of the CAAC-stabilized 1,4-diborabenzene 42, the redox properties as well as the potential application as a η6-ligand for transition metals of the chromium triad, were investigated. The reduction of 42 with elemental lithium led to the formation of the two-electron reduction product 45. The formation of a quinoidal system led to an isomeric mixture of cis/trans configured CAAC ligands. Treatment of the compound with 0.5 equivalents of zirconium tetrachloride led to the quantitative formation of 42 and thereby demonstrating the high reduction potential of the dilithiated species. Furthermore, the reaction of 42 with [(MeCN)3M(CO)3] (M = Cr, Mo, W) enabled the synthesis of 18-valence-electron half-sandwich complexes. The coordination of the electron rich heteroarene to the metal tricarbonyl fragments resulted in the lowest ever observed carbonyl stretches for [(η6-arene)M(CO)3] complexes due to the strong electron donation of the ligand to the metal and the resulting backdonation into the antibonding π*-orbitals of the CO ligands. DFT calculations revealed (in contrast to [(η6-C6H6)Cr(CO)3]) significantly higher binding energies between the metal fragment and the 1,4-diborabenzene and together with further spectroscopic and theoretical analyses underline the remarkable ability of 42 to act as an exceedingly electron donating ligand. Ultimately in a reactivity study with the tungsten complex 48, it was possible to obtain the radical monoanion 49, which is the first example of a monoanionic arene metal tricarbonyl complex of group 6 metals. A final topic of this work concerned the synthesis of biradicals from twisted double bonds and the comparison with their diamagnetic congeners, diborenes. The reaction of the diboracumulene with differently substituted disulfides and one diselenide led to the formation of persistent, paramagnetic biradicals through 1,2 additions across the boron–boron multiple bond. While the addition of the reagents to the IDip-stabilized diboryne provided closed-shell, diamagnetic diborenes with a coplanar orientation of the substituents, the addition to the diboracumulene 7 led to the formation of a boron–boron single bond with mutually orthogonal ligands. EPR spectroscopy as well as magnetic measurements of the samples showed a triplet ground state for 51e at room temperature with a strong delocalization of the unpaired electrons into the ligands due to the captodative effect of the π-donor nitrogen atoms and π-acceptor boron atoms. Furthermore, detailed theoretical studies showed that the singlet states of the synthesized diborenes are always more stable than the triplet states and that the triplet states of the paramagnetic compounds 51a,b,e are always more stable than the respective singlet states. All compounds exist in their ground states and therefore represent highly interesting model systems for a deeper understanding of this class of compounds.
39

Anionic and Neutral Lewis-Base Adducts of Diboron(4) Compounds / Anionische und Neutrale Lewis-Basen Addukte von Diboran(4)-Verbindungen

Würtemberger-Pietsch, Sabrina January 2017 (has links) (PDF)
Anionic Adducts Sp2-sp3 tetraalkoxy diboron compounds have gained attention due to the development of new, synthetically useful catalytic reactions either with or without transition-metals. Lewis-base adducts of the diboron(4) compounds were suggested as possible intermediates in Cu catalyzed borylation reactions some time ago. However, intermolecular adducts of tetraalkoxy diboron compounds have not been studied yet in great detail. In preliminary studies, we have synthesized a series of anionic sp2-sp3 adducts of B2pin2 with alkoxy-groups (L = [OMe]–, [OtBu]–), a phenoxy-group (L = [4-tBuC6H4O]–) and fluoride (L = [F]–, with [nBu4N]+ as the counter ion) as Lewis-bases. Neutral Adducts Since their isolation and characterization, applications of N-heterocyclic carbenes (NHCs) and related molecules, e.g., cyclic alkylaminocarbenes (CAACs) and acyclic diaminocarbenes (aDCs), have grown rapidly. Their use as ligands in homogeneous catalysis and directly in organocatalysis, including recently developed borylation reactions, is now well established. Recently, several examples of ring expansion reactions (RER) involving NHCs were reported to take place at elevated temperatures, involving Be, B, and Si. Furthermore, preliminary studies in the group of Marder et al. showed the presence of neutral sp2-sp3 diboron compounds with B2pin2 and the NHC Cy2Im. In this work, we focused on the synthesis and characterization of further neutral sp2-sp3 as well as sp3-sp3 diboron adducts with B2cat2 and B2neop2 and different NHCs. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B–B bond cleavage can be very facile processes. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B–B bond cleavage can be very facile processes. / Im Rahmen der vorliegenden Arbeit wurde die Synthese und das Reaktionsverhalten Lewis-Säuren/Lewis-Basen-Addukte von Diboran(4)-Verbindungen als Lewis-Säuren untersucht. Als Lewis-Basen dienten zum einem das Fluorid-Ion, zum anderen N-Heterozyklische Carbene. Ein Ziel der vorliegenden Arbeit war somit die Synthese und Charakterisierung anionischer sp2-sp3-Diboran-Verbindungen des Typs [B2(OR)4F][NMe4] (OR2 = Pinakol, Catechol und Neopentyl), die auf ihre Eigenschaft als „Boryl-Übertragungsreagenz“ gegenüber Diazoniumsalzen überprüft wurden. Der zweite Teil der Arbeit untersucht die Reaktion von Diboranen (B2cat2 und B2neop2) mit gesättigten und ungesättigten N-Heterozyklischen Carbenen (NHCs). Die neutralen, einfach- und zweifach-substituierten NHC-Addukte des Typs B2(OR)4•NHC und B2(OR)4•(NHC)2 wurden anschließend auf ihre thermische Stabilität untersucht. Die Ergebnisse dieser Arbeit zeigen zum einem, dass anionische Addukte des Typs [B2(OR)4F][NMe4] 4, 7 und 9 als „Boryl-Übertragungsreagenzien“ eingesetzt werden können. Ferner lassen sich ausgehend von Diboran(4)-Verbindungen durch die Umsetzung mit N Heterozyklischen Carbenen die einfach- und zweifach-substituierten NHC-Addukte B2(OR)4•NHC und B2(OR)4•(NHC)2 synthetisieren. Diese sind zum Teil instabil gegenüber einer Ringerweiterungsreaktion unter Insertion einer Boryleinheit in die C–N-Bindung des Carbens. Untersuchungen an NHC-Addukten von Boranen BR3 und HB(OR)2 zeigen weiterhin, dass die Addukte Ph3B•NHC gegenüber solchen Ringerweiterungen stabil sind. Die Addukte HB(OR)2•NHC sind je nach eingesetztem Carben und Boran entweder stabil oder reagieren unter B–H-Bindungsaktivierung zur Ringerweiterung des Carbens.
40

Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden / Synthesis, structure, and properties of novel silicon(II) and silicon(IV) complexes with guanidinato ligands

Mück, Felix Maximilian January 2016 (has links) (PDF)
Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivitäts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27–36, 38, 47–49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40–42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festkörper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in Lösung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Moläquivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Moläquivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden“ umgeben. Beide Verbindungen liegen sowohl im Festkörper als auch in Lösung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in Lösung wurde auch durch quantenchemische Rechnungen bestätigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festkörper trikoordiniert und in Lösung tetrakoordiniert. Reaktivitätsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-Säure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27–38). Mit Ausnahme der Bildung von 25, 27 und 34–36 ist das typische Reaktivitätsspektrum des Silylens 23 an zusätzliche Reaktivitätsfacetten gekoppelt: (i) eine Änderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28–33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium–Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-Säure/Base-Reaktion unter Bildung des Lewis-Säure/Base-Adduktes 25 und – nach einer zusätzlichen Umlagerung – Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verläuft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium–Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zunächst mit einer der beiden C–C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermediär gebildeten Silacyclopropenringes. Die Verbindungen 30–33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Gerüst dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zunächst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium–Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. Für die Bildung von 31–33 postuliert man zunächst eine homolytische El–El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si–ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden führt dann unter Abspaltung von Me3SiElPh zur Bildung von 31–33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verläuft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34–36 mit einer Silicium–Chalcogen-Doppelbindung. Für die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molekül Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zunächst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Moleküls Kohlenstoffdioxid an die Silicium–Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gestützt, dass 37 ebenfalls durch Umsetzung von 30 mit einem Überschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27–36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34–36) bzw. Imino-Liganden (nur 28–33) sowie einer Si–El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si–El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 lässt sich als verzerrtes Tetraeder beschreiben. Reaktivitätsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-Säuren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium–Bor-, Silicium–Aluminium- bzw. Silicium–Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-Säure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer äquatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium–Zink-Verbindung 42 auch in Lösung stabil ist, während die Silicium–Bor- und Silicium–Aluminium-Verbindung 39 bzw. 40 in Lösung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen ähnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilität in Lösung. Da 39 und 40 in Lösung auch bei tieferer Temperatur (T = –20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei höherer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine stärkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den Übergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43–45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43–45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbrückt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer äquatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43–46 mit den jeweiligen Amidinato-Analoga 4–7 fällt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) führt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4–6, während die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden führt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43–45 mit einem verbrückenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47–51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47–51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49–51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium–Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47–51 wird erneut die unterschiedliche Reaktivität der Amidinato/Guanidinato-analogen Silylene 1 (im Festkörper tri- und in Lösung tetrakoordiniert) und 24 (sowohl in Lösung als auch im Festkörper trikoordiniert) deutlich. Interessanterweise führen die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10–12 repräsentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49–51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, während der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden trägt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer äquatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verläuft formal unter heterolytischer Aktivierung einer Chalcogen–Chalcogen-Bindung und führt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu führt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se–Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivität des Silylens 24 gegenüber kleinen Molekülen untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem Überschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer äquimolaren Menge an Kohlenstoffdisulfid (→ 56), einer stöchio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen Überschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repräsentieren sehr seltene Beispiele für Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repräsentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbrückenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele für Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten führen (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), während in der Mehrzahl der Fälle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer äquatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repräsentiert mit seinem über das Kohlenstoff-Atom bindenden CS22–-Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel für das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform. / This thesis is a contribution to the chemistry of donor-stabilized silylenes with guanidinato ligands. The main focus of this work was the synthesis, characterization, and reactivity studies of the two novel silicon(II) complexes 23 and 24 with different sterically demanding ligand systems. A second focus was the characterization of the resulting four-, five-, and six-coordinate silicon(II) or silicon(IV) complexes. In the course of these studies, the donor-stabilized three-coordinate silylenes 23 and 24, the neutral four-coordinate silicon(II) complexes 25·C4H8O and 26, the neutral four-coordinate silicon(IV) complexes 27–36, 38, 47–49, and 51, the neutral five-coordinate silicon(II) complexes 39·0.5C6H5CH3, 40–42 and 46, the neutral five-coordinate silicon(IV) complexes 18, 19, 37, and 56, the cationic five-coordinate silicon(IV) complexes 52 and 53, and the neutral six-coordinate silicon(IV) complexes 20, 55·0.5C6H5CH3, 57, and 58 were prepared for the first time. These compounds were characterized by elemental analyses (except 33), NMR spectroscopic studies in the solid state (15N, 29Si, 31P (27 only), and 77Se VACP/MAS NMR (32, 35, 50, and 53 only) as well as 11B (39·0.5C6H5CH3 only), 27Al (40 and 41 only), and 125Te HPDec/MAS NMR (33, 36, and 51 only)) and in solution (except 39, 40, 52, and 53; 1H, 13C, 27Al (41 only), 29Si, 31P (27 only), 77Se (32, 35, and 50 only), and 125Te NMR (33, 36, and 51)), and single-crystal X-ray diffraction. Synthesis and characterization of two novel donor-stabilized mono- and bis(guanidinato)-silylenes The donor-stabilized silylenes 23 and 24 were synthesized by treatment of the five-coordinate dichlorohydrido(guanidinato)silicon(IV) complex 18 and six-coordinate chlorohydrido-bis(guanidinato)silicon(IV) complex 20, respectively, with potassium bis(trimethylsilyl)amide (reductive hydrogen chloride elimination). Compound 18 was prepared by treatment of trichlorosilane with one molar equivalent of lithium N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinate, and 19 was obtained by treatment of trichlorosilane with two molar equivalents of lithium N,N´,N´,N´´-tetraisopropylguanidinate. All attempts to synthesize silylene 22 by reduction of the corresponding five-coordinate trichloro(guanidinato)silicon(IV) complex 19 with alkali metals failed. The silicon coordination polyhedra of the five-coordinate silicon(IV) complexes 18 and 19 are strongly distorted trigonal bipyramids, with a chlorine and nitrogen atom in the axial positions. The silicon coordination polyhedron of 20 is a strongly distorted octahedron, with the chloro and hydrido ligands in cis positions. The silicon atoms of silylenes 23 and 24 are coordinated in a pseudo-tetrahedral fashion by three nitrogen atoms and the lone electron pair as the fourth “ligand”. Both silylenes are three-coordinate both in the solid state and in solution (one bidentate guanidinato and one monodentate amido/guanidinato ligand). The three-coordination of 24 in solution was also confirmed by quantum chemical calculations. This is in contrast to the analogous bis(amidinato)silylene 1, which is three-coordinate only in the solid state and four-coordinate in solution. Reactivity studies of the donor-stabilized mono(guanidinato)silylene 23 Starting from silylene 23, the four-coordinate silicon(II) complexes 25 and 26, the four-coordinate silicon(IV) complexes 27–36 and 38, and the five-coordinate silicon(IV) complex 37 were synthesized. The formation of these products is based on Lewis acid/base (25, 26) or oxidative addition reactions (27–38). Except for the formation of 25, 27, and 34–36, the typical silylene reactivity of 23 is coupled with additional reactivity facets, such as (i) a switch of the coordination mode of the guanidinato ligand from bidentate binding to only one coordination center to bidentate binding to two different coordination centers (→ 26), (ii) a 1,3-SiMe3 shift of one of the two SiMe3 groups of the amido ligand (→ 28–33), or (iii) a nucleophilic reaction of one of the two nitrogen ligand atoms of the guanidinato ligand as part of a rearrangement reaction (→ 38). Silylene 23 reacts with zinc chloride and zinc diethyl to give the neutral four-coordinate silicon(II) complexes 25 (isolated as 25·C4H8O) and 26, respectively, with a silicon–zinc bond. In these transformations silylene 23 reacts as a Lewis base to furnish the Lewis acid/base adducts 25 and (upon an additional rearrangement) compound 26. The silicon coordination polyhedra of 25·C4H8O and 26 are (strongly) distorted tetrahedra. In the case of 25, the guanidinato ligand binds in a bidentate and in 26 in a monodentate fashion to the silicon atom. The four-coordinate silicon(IV) complexes 27–36 and 38 and the five-coordinate silicon(IV) complex 37 were formed in an oxidative addition reaction by treatment of 23 with diphenylphosphoryl azide (→ 27), 2,4-hexadiyne (→ 28), 1,4-diphenylbutadiyne (→ 29), dinitrogen monoxide (→ 30), diphenyl disulfide (→ 31), diphenyl diselenide (→ 32), diphenyl ditelluride (→ 33), sulfur (→ 34), selenium (→ 35), tellurium (→ 36), carbon dioxide (→ 37), and carbon disulfide (→ 38) respectively. Additionally, compound 37 could also be synthesized by treatment of 30 with carbon dioxide. The reaction of 23 with diphenylphosphoryl azide proceeds with a nitrogen elimination and formation of 27 with a silicon–nitrogen double bond. Compound 27 and can be formally described as an intramolecularly donor-stabilized silaimine. Compounds 28 and 29 can be formally described as donor-stabilized silaimines with a silicon-bound trisubstituted vinyl group. The reaction mechanism is postulated to be a [1+2] cycloaddition of 23 with one of two C–C triple bonds of the diynes to form the corresponding silacyclopropenes, which then undergo a rearrangement with a 1,3-shift of one of the two SiMe3 groups from the nitrogen atom of the amido ligand to the carbon atom of the silacyclopropene ring. Compounds 30–33 represent the first thermally stable donor-stabilized silaimines with an SiN3El skeleton (El = O, S, Se, Te). The formation of 30 can be rationalized in terms of an oxidation of 23 with dinitrogen monoxide to give a four-coordinate silicon(IV) complex with an silicon–oxygen double bond, which then undergoes a 1,3-shift of one of the two SiMe3 groups from the nitrogen to the oxygen atom to give 30 (including elimination of nitrogen). The formation of 31–33 can be rationalized in terms of a homolytic El–El bond activation (El = S, Se, Te) of the corresponding diphenyl dichalcogenides (formation of two Si–ElPh groups), followed by a 1,3-shift of one of the two SiMe3 groups to one of the two Si–ElPh moieties and elimination of Me3SiElPh. Reaction of 23 with the elemental chalcogens sulfur, selenium, and tellurium proceeds also in terms of an oxidative addition to form compounds 34–36 with a silicon–chalcogen double bond. For the formation of 37, a three-step process is proposed. In a first two-stage step, silylene 23 reacts with one molecule of carbon dioxide to give the stable four-coordinate silicon(IV) complex 30 as an intermediate (elimination of carbon monoxide). Addition of a second carbon dioxide molecule to the silicon–nitrogen double bond of 30 finally afforded the five-coordinate silicon(IV) complex 37 with an N,O-chelating carbamato ligand. This mechanism is strongly supported by the finding that treatment of 30 with an excess of CO2 also afforded compound 37. Reaction of 23 with carbon disulfide leads to the cyclic silicon(IV) complex 38. The silicon coordination polyhedra of 27–36 in the crystal are strongly distorted tetrahedra, with a bidentate guanidinato ligand, an amido ligand (27 and 34–36 only), and an imino ligand (28–33), respectively, and with an Si–El single bond (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) and an Si–El double bond (27: El = N, 34: El = S; 35: El = Se; 36: El = Te), respectively. The silicon coordination polyhedron of 37 is a strongly distorted trigonal bipyramid, with the oxygen atom of the carbamato ligand and a nitrogen atom of the guanidinato ligand in the axial positions. The silicon coordination polyhedron of 38 is a distorted tetrahedron. Reactivity of the donor-stabilized silylene 24 Silylene 24 reacts with the Lewis acids triphenylborane, triphenylalane, and zinc chloride to give the respective five-coordinate silicon(II) complexes 39, 40, and 42, which contain an Si–B, Si–Al, and Si–Zn bond, respectively. In these transformations, silylene 24 reacts as a Lewis base to afford Lewis acid/base adducts. The silicon coordination polyhedra of 39, 40, and 42 in the crystal are strongly distorted trigonal bipyramids, with the boron, aluminum, and zinc atom in an equatorial position. NMR spectroscopic studies demonstrated that the silicon–zinc compound 42 is also stable in solution, whereas the silicon–boron and silicon–aluminum compounds 39 and 40, respectively, are unstable in solution. Both complexes dissociate quantitatively to form 24 and ElPh3 (El = B, Al). The bis(guanidinato)silicon(II) complexes 39 and 40 and the analogous bis(amidinato)silicon(II) complexes 3 and 41 are characterized by similar structures each. However, the respective amidinato/guanidinato analogues 3/39 and 41/40 differ significantly in their chemical stability in solution. As 39 and 40 even dissociate at lower temperature (T = –20 °C) and the corresponding amidinato analogues 3 and 41 are stable at higher temperatures (T = 70 °C), the bis(amidinato)silylene 1 is suggested to be a better σ-donor and thus a stronger Lewis base compared to the bis(guanidinato)silylene 24. Furthermore, silylene 24 reacts as a nucleophile with the transition-metal carbonyl complexes [M(CO)6] (M = Cr, Mo, W) and [Fe(CO)5] to form the corresponding four-coordinate silicon(II) complexes 43–45 and the five-coordinate silicon(II) complex 46. The silicon coordination polyhedra of 43–45 are strongly distorted tetrahedra, with one silicon-bound bidentate guanidinato ligand and a second guanidinato ligand that bridges the silicon and the transition-metal atom. The two silicon coordination polyhedra of 46 are strongly distorted trigonal bipyramids, with the iron atom in an equatorial site. Comparison of the bis(guanidinato)silicon(II) complexes 43–46 with the respective amidinato analogues 4–7 reveals that only the iron complexes 7 and 46 have analogous structures. In contrast, the bis(amidinato)silylene 1 reacts with [M(CO)6] (M = Cr, Mo, W) in terms of a monosubstitution (replacement of one of the six carbonyl ligands) to give the five-coordinate silicon(II) complexes 4–6, whereas treatment of [M(CO)6] with the bis(guanidinato)silylene 24 leads to a disubstitution (replacement of two carbonyl ligands) to afford the four-coordinate silicon(II) complexes 43–45. The four-coordinate silicon(IV) complexes 47–51 were synthesized in terms of an oxidative addition reaction by treatment of 24 with trimethylsilyl azide (→ 47), dinitrogen monoxide (→ 48), sulfur (→ 49), selenium (→ 50), and tellurium (→ 51), respectively. The formation of 47 and 48 proceeds with the elimination of nitrogen. The silicon coordination polyhedra of 47–51 in the crystal are strongly distorted tetrahedra. The dinuclear complex 48 contains two monodentate guanidinato ligands each and an Si2O2 ring. Compounds 47 and 49–51 represent the first four-coordinate bis(guanidinato)silicon(IV) complexes with a silicon–nitrogen or silicon–chalcogen double bond (S, Se, Te), respectively. The formation of compounds 47–51 once again emphasizes the different reactivities of the amidinato/guanidinato-analogous silylenes 1 (three-coordinate in the solid-state and four-coordinate in solution) and 24 (three-coordinate both in the solid state and in solution). It is interesting to note that the oxidative addition reactions of the amidinato/guanidinato analogues 1 and 24 with trimethylsilyl azide, dinitrogen monoxide, sulfur, selenium and tellurium lead to products with different silicon coordination numbers. Compounds 8 and 10–12 represent five-coordinate silicon(IV) complexes with two bidentate amidinato ligands, whereas the corresponding analogues 47 and 49–51 are four-coordinate silicon(IV) complexes that contain one bidentate and one monodentate guanidinato ligand. Likewise, compound 9 is a dinuclear five-coordinate silicon(IV) complex with one bidentate and one monodentate amidinato ligand, whereas the dinuclear four-coordinate complex 48 contains two monodentate guanidinato ligands each. The cationic five-coordinate silicon(IV) complexes 52 and 53 were also synthesized in terms of an oxidative addition reaction by treatment of 24 with diphenyl disulfide (→ 52) and diphenyl diselenide (→ 53), respectively. The silicon coordination polyhedra of 52 and 53 are strongly distorted bipyramids, with the sulfur or the selenium atom in an equatorial position. The formation of 52 and 53 is formally based on a heterolytic chalcogen–chalcogen bond activation of diphenyl disulfide and diphenyl diselenide by the bis(guanidinato)silylene 24. In contrast, a homolytic Se–Se bond activation was observed for the reaction of diphenyl diselenide with the analogous bis(amidinato)silylene 1 (formation of the six-coordinate silicon(IV) complex 13). Furthermore, the reactivity of silylene 24 towards small molecules was investigated. The six-coordinate silicon(IV) complexes 55, 57, and 58 and the five-coordinate silicon(IV) complex 56 were prepared in terms of an oxidative addition reaction by treatment of 24 with an excess of carbon dioxide (→ 55), with an equimolar amount of carbon disulfide (→ 56), with a stoichiometric amount of sulfur dioxide (→ 57), and with a vast excess of liquid sulfur dioxide (which served also as the solvent; → 58), respectively. Compound 58 was isolated as a co-crystallizate of the isomers cis-58 and trans-58, which differ in their relative orientation of the two exocyclic oxygen atoms. The silicon coordination polyhedra of 55·C6H5CH3, 57, and 58 are strongly distorted octahedra. The oxygen ligand atoms of the bidentate O,O´-chelating carbonato (55), sulfito (56), and dithionito (57) ligands are found in cis positions each. Compound 58 is the second structurally characterized silicon compound with a bidentate O,O´-chelating dithionito ligand, and 55, 57, and 58 represent very rare examples of main-group element compounds with an O,O´-chelating carbonato, sulfito, or dithionito ligand. Complex 57 and its amidinato analogue 16 represent two of three main-group element compounds with an O,O´-chelating sulfito ligand, and complexes 55 and 58 (together with their amidinato analogues 14 and 17) are even the only known molecular compounds that contain an O,O´-chelating carbonato and non-bridging dithionito ligand, respectively. The formation of 55, 57, and 58 is one of the rare examples of reactions of the amidinato/guanidinato-analogous silylenes 1 and 24 that lead to structurally analogous products (amidinato/guanidinato analogues 14/55, 16/57, and 17/58), whereas in most cases different reactivity profiles were observed. The silicon coordination polyhedron of 56 is a strongly distorted trigonal bipyramid, with the carbon atom in an equatorial position. The five-coordinate silicon(IV) complex 56 with its carbon-bound CS22– ligand represents an unprecedented coordination mode in silicon chemistry, and the formation of 56 is a further example of the different reactivity profiles of the amidinato/guanidinato-analogous silylenes 1 and 24. The bis(amidinato)silylene 1 reacts with carbon disulfide to give the six-coordinate silicon(IV) complex 15 with an S,S´-chelating trithiocarbonato ligand and thereby differs from its guanidinato analogue 56 by both the silicon-coordination number and the coordination mode.

Page generated in 0.0239 seconds