771 |
Mutig für unsere Heimat30 November 2022 (has links)
In dem und um den Tharandter Wald entsteht mit
dem GEOPARK SACHSENS MITTE nach
und nach eine geotouristische Erlebniswelt,
die Mensch, Natur und Technik
zusammenführt und den Reichtum der
Erde spürbar macht.
|
772 |
The effect of policy incoherence on the emergence of groundwater-related subsidence phenomena: A case study from IranLoghmani Khouzani, Seyed Taha, Kirschke, Sabrina, Yousefi, Ali, Liedl, Rudolf 28 March 2023 (has links)
Land subsidence due to overexploitation of aquifers is often attributed to incoherent public policies. Taking the case of the Mahyar valley in Iran as an example, and based on a mixed-method research design, this study analyses the effects of policy incoherence on well use for agricultural irrigation and the resulting groundwater levels. Results show how an accumulation of policy incoherence over time results in an increased construction of wells, ultimately leading to a groundwater table drawdown, with a significant decrease of 7.61 m in the last 16 years.
|
773 |
Kleiner Berg und Bergbaupfad: Georouten 3/4 : Unterwegs im Geopark Porphyrland - Gemeinde Lossatal/Hohburg05 July 2022 (has links)
Die landschaftliche Idylle der Hohburger Berge spiegelt
sich in der liebevollen Bezeichnung „Hohburger Schweiz“
wider. Das Quarzporphyrgestein, aus dem die Hügel
geformt sind, bestimmt seit Jahrhunderten das Leben
in den Dörfern. Bis heute wird das vulkanische Gestein
im Lossatal gebrochen. Wer aufmerksam unterwegs
ist, kann eine Zeitreise unternehmen – insbesondere
in Hohburg. Vom Museum Steinarbeiterhaus führen
zwei GeoRouten durch die spannende Erd-, Kultur- und
Industriegeschichte. Unser Tipp: Verfolgen Sie zuerst auf
der GeoRoute Kleiner Berg die Jahrmillionen der Landschaftsentstehung
bis zum Supervulkanismus zurück
und entdecken Sie danach auf dem Bergbaupfad die Spuren des Steinabbaus.
|
774 |
Rundbrief / Agricola-Forschungszentrum Chemnitz05 October 2022 (has links)
No description available.
|
775 |
¹⁸O analyses of bulk lipids as novel paleoclimate tool in loess research – a pilot studyLabahn, Jakob, Bittner, Lucas, Hirschmann, Philip, Roettig, Christopher-Bastian, Burghardt, Diana, Glaser, Bruno, Marković, Slobodan B., Zech, Michael 31 May 2024 (has links)
The analysis of the stable oxygen isotopes 18O and 16O has revolutionized paleoclimate research since the middle of the last century. Particularly, δ18O of ice cores from Greenland and Antarctica is used as a paleotemperature proxy, and δ18O of deep-sea sediments is used as a proxy for global ice volume. Important terrestrial archives to which δ18O as a paleoclimate proxy is successfully applied are speleothems, lake sediments, or tree rings. By contrast, δ18O applications to loess–paleosol sequences (LPSs) are scarce. Here we present a first continuous δ18O record (n=50) for the LPS Crvenka in Serbia, southeastern Europe, spanning the last glacial–interglacial cycle (since 145 ka). From a methodological point of view, we took advantage of a recently proposed paleoclimate/paleohydrological proxy based on bulk δ18O analyses of plant-derived lipids. The Crvenka δ18Obulk lipid values range between −10.2 ‰ and +23.0 ‰ and are systematically more positive in the interglacial and interstadial (paleo-)soils corresponding to marine oxygen-isotope stage (MIS) 1, 3, and 5, compared to the loess layers (MIS 2, 4, and 6). Our Crvenka δ18Obulk lipid record provides no evidence for the occurrence of interstadials and stadials comparable to the Dansgaard–Oeschger events known from the Greenland δ18Oice core records. Concerning the interpretation of our Crvenka δ18Obulk lipid record, plant-derived lipids such as fatty acids and alcohols are certainly strongly influenced by climatic factors such as temperature (via δ18Oprecipitation) and relative air humidity (via 18O enrichment of leaf water due to evapotranspiration). However, pool effects in the form of non-water-correlated lipids such as sterols or the input of root-derived lipids need to be considered, too. Similarly, the input of soil-microbial lipids and oxygen exchange reactions represent uncertainties challenging quantitative paleoclimate/paleohydrological reconstructions based on δ18Obulk lipid analyses from LPSs. / Die Analyse der stabilen Sauerstoffisotope 18O und 16O hat die Paläoklimaforschung seit Mitte des letzten Jahrhunderts revolutioniert. Insbesondere wird δ18O von Eisbohrkernen aus Grönland und der Antarktis als Paläo-Temperaturproxy sowie δ18O von Tiefseesedimenten als Proxy für das globale Eisvolumen verwendet. Wenngleich sich in terrestrischen Archiven, wie Speläothemen, Seesedimenten oder Baumringen, paläoklimatische Rekonstruktionen unter der Anwendung von δ18O als Proxy bewährt haben, wurden solche Analysen bislang in Löß-Paläobodensequenzen (LPS) selten durchgeführt. In dieser Studie präsentieren wir einen ersten kontinuierlichen δ18O Datensatz (n=50) für die LPS Crvenka in Serbien, der den letzten Glazial-Interglazial-Zyklus (∼ 145 ka) abdeckt. Die δ18O-Werte basieren auf der Analyse von pflanzlichen Lipiden, deren Anwendung als paläoklimatischer/hydrologischer Proxy vor Kurzem vorgeschlagen wurde.
Die δ18Obulk−lipid-Werte von Crvenka liegen zwischen −10.2 ‰ und +23.0 ‰ und sind in den interglazialen und interstadialen (Paläo-)Böden, die den marinen Sauerstoff-Isotopenstufen (MIS) 1, 3 und 5 entsprechen, systematisch positiver als in den Lößlagen (MIS 2, 4 und 6). Sie liefern keine Hinweise für das Auftreten von Interstadialen und Stadialen, die mit den aus den grönländischen δ18Oice−core bekannten Dansgaard-Oeschger-Ereignissen vergleichbar wären. In Bezug auf die Interpretation der δ18Obulk−lipid-Werte gilt es zu berücksichtigen, dass die Isotopie pflanzlicher Lipide, wie z.B. von Fettsäuren und Alkoholen, stark durch die Klimafaktoren Temperatur (über δ18O-Niederschlag) und relativer Luftfeuchtigkeit (über die 18O-Anreicherung des Blattwassers aufgrund von Evapotranspiration) beeinflusst werden. Weiter zu beachtende Faktoren stellen Einträge von Sterolen sowie von generell wurzel-bürtigen Lipiden dar (Pool-Effekte). In ähnlicher Weise bergen der Einfluss von bodenmikrobiellen Lipiden und Sauerstoffaustauschreaktionen Unsicherheiten, die quantitative paläoklimatische/hydrologische Rekonstruktionen auf der Grundlage von δ18Obulk−lipid-Analysen aus LPS erschweren können.
|
776 |
Ensemble of models shows coherent response of a reservoir’s stratification and ice cover to climate warmingFeldbauer, Johannes, Ladwig, Robert, Mesman, Jorrit P., Moore, Tadhg N., Zündorf, Hilke, Berendonk, Thomas U., Petzoldt, Thomas 22 March 2024 (has links)
Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical onedimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions.
|
777 |
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exerciseKnoben, Wouter J. M., Spieler, Diana 06 June 2024 (has links)
Estimating the impact of different sources of uncertainty along the modelling chain is an important skill graduates are expected to have. Broadly speaking, educators can cover uncertainty in hydrological modelling by differentiating uncertainty in data, model parameters and model structure. This provides students with insights on the impact of uncertainties on modelling results and thus on the usability of the acquired model simulations for decision making. A survey among teachers in the Earth and environmental sciences showed that model structural uncertainty is the least represented uncertainty group in teaching. This paper introduces a computational exercise that introduces students to the basics of model structure uncertainty through two ready-to-use modelling experiments. These experiments require either Matlab or Octave, and use the open-source Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) and the open-source Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) data set. The exercise is short and can easily be integrated into an existing hydrological curriculum, with only a limited time investment needed to introduce the topic of model structure uncertainty and run the exercise. Two trial applications at the Technische Universität Dresden (Germany) showed that the exercise can be completed in two afternoons or four 90 min sessions and that the provided setup effectively transfers the intended insights about model structure uncertainty.
|
778 |
Feasibility of a global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven in simulation experimentsWillen, Matthias O., Horwath, Martin, Groh, Andreas, Helm, Veit, Uebbing, Bernd, Kusche, Jürgen 19 April 2024 (has links)
Estimating mass changes of ice sheets or of the global ocean from satellite gravimetry strongly depends on the correction for the glacial isostatic adjustment (GIA) signal. However, geophysical GIA models are different and incompatible with observations, particularly in Antarctica. Regional inversions have resolved GIA over Antarctica without ensuring global consistency, while global inversions have been mostly constrained by a priori GIA patterns. For the first time, we set up a global inversion to simultaneously estimate ice sheet mass changes and GIA, where Antarctic GIA is spatially resolved using a set of global GIA patterns. The patterns are related to deglaciation impulses localized along a grid over Antarctica. GIA associated with four regions outside Antarctica is parametrized by global GIA patterns induced by deglaciation histories. The observations we consider here are satellite gravimetry, satellite altimetry over Antarctica and Greenland, as well as modelled firn thickness changes. Firn thickness changes are also parametrized to account for systematic errors in their modelling. Results from simulation experiments using realistic signals and error covariances support the feasibility of the approach. For example, the spatial RMS error of the estimated Antarctic GIA effect, assuming a 10-year observation period, is 31% and 51%, of the RMS of two alternative global GIA models. The integrated Antarctic GIA error is 8% and 5%, respectively, of the integrated GIA signal of the two models. For these results realistic error covariances incorporated in the parameter estimation process are essential. If error correlations are neglected, the Antarctic GIA RMS error is more than twice as large.Highlights We present a globally consistent inversion approach to co-estimate glacial isostatic adjustment effects together with changes of the ice mass and firn air content in Greenland and Antarctica. The inversion method utilizes data sets from satellite gravimetry, satellite altimetry, regional climate modelling, and firn modelling together with the full error-covariance information of all input data. The simulation experiments show that the proposed GIA parametrization in Antarctica can resolve GIA effects unpredicted by geophysical modelling, despite realistic input-data limitations.
|
779 |
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcingVorobevskii, Ivan, Luong, Thi Thanh, Kronenberg, Rico, Grünwald, Thomas, Bernhofer, Christian 19 April 2024 (has links)
Evaporation plays an important role in the water balance on a different spatial scale. However, its direct and indirect measurements are globally scarce and accurate estimations are a challenging task. Thus the correct process approximation in modelling of the terrestrial evaporation plays a crucial part. A physically based 1D lumped soil–plant–atmosphere model (BROOK90) is applied to study the role of parameter selection and meteorological input for modelled evaporation on the point scale. Then, with the integration of the model into global, regional and local frameworks, we made cross-combinations out of their parameterization and forcing schemes to show and analyse their roles in the estimations of the evaporation.
Five sites with different land uses (grassland, cropland, deciduous broadleaf forest, two evergreen needleleaf forests) located in Saxony, Germany, were selected for the study. All tested combinations showed a good agreement with FLUXNET measurements (Kling–Gupta efficiency, KGE, values 0.35–0.80 for a daily scale). For most of the sites, the best results were found for the calibrated model with in situ meteorological input data, while the worst was observed for the global setup. The setups' performance in the vegetation period was much higher than for the winter period. Among the tested setups, the model parameterization showed higher spread in performance than meteorological forcings for fields and evergreen forests sites, while the opposite was noticed in deciduous forests. Analysis of the of evaporation components revealed that transpiration dominates (up to 65 %–75 %) in the vegetation period, while interception (in forests) and soil/snow evaporation (in fields) prevail in the winter months. Finally, it was found that different parameter sets impact model performance and redistribution of evaporation components throughout the whole year, while the influence of meteorological forcing was evident only in summer months.
|
780 |
Turbulent fluid flow in rough rock fracturesFinenko, Maxim 14 May 2024 (has links)
This thesis is dedicated to the study of the turbulent fluid flow in rough-walled rock fractures. Fracture models were generated from 3D scans of fractured rock samples, while fluid flow was simulated numerically by means of FVM-based open-source CFD toolbox OpenFOAM, employing the high-performance computing cluster for the more demanding 3D models.
First part of the thesis addresses the issue of fracture geometry. Realistic 2D and 3D fracture models were constructed from 3D scans of upper and lower halves of a fractured rock sample, taking both shear displacement and contact spots into account. Furthermore, we discuss the shortcomings of the available fracture aperture metrics and propose a new aperture metric based on the Hausdorff distance; imaging performance of the new metric is shown to be superior to the conventional vertical aperture, especially for rough fracture surfaces with abundant ridges and troughs.
In the second part of the thesis we focus on the fluid flow through the rock fracture for both 2D and 3D cases. While previous studies were largely limited to the fully viscous Darcy or inertial Forchheimer laminar flow regimes, we chose to investigate across the widest possible range of Reynolds numbers from 0.1 to 10^6, covering both laminar and turbulent regimes, which called for a thorough investigation of suitable turbulence modeling techniques. Due to narrow mean aperture and high aspect ratio of the typical fracture geometry, meshing posed a particularly challenging problem. Taking into account limited computational resources and a sheer number of model geometries, we developed a highly-optimised workflow, employing the steady-state RANS simulation approach to obtain time-averaged flow fields. Our findings show that while flow fields remain mostly stationary and undisturbed for simpler contactless geometries, emergence of contact spots immediately triggers a transition to non-stationary flow starting from Re ∼ 10^2, which is reflected by the streamline tortuosity data. This transition disrupts the flow pattern across the fracture plane, causing strong channeling and large separation bubbles, with area of the latter being much larger than the generating contact spots. Adverse influence of the contact spots on the overall permeability is strong enough to override any benefits of aperture increase during shear and dilation. Contactless 3D models can to a certain degree be approximated by their 2D counterparts. Lastly, we investigate the influence of both shearing and contact spots on the overall permeability and friction factor of the fracture, drawing a parallel to the well-studied area of turbulent flow in rough-walled pipes and ducts. Unlike the latter, 3D curvilinear fracture geometries exhibit a gapless laminar–turbulent transition, behaving as a hydraulically rough channel in the turbulent range as the shear displacement increases.
|
Page generated in 0.0284 seconds