• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 37
  • 25
  • Tagged with
  • 170
  • 170
  • 88
  • 88
  • 88
  • 42
  • 34
  • 30
  • 27
  • 27
  • 21
  • 20
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Heat and mass transfer to particles in pulsating flows

Heidinger, Stefan 24 January 2024 (has links)
The behaviour of particles in pulsating and oscillating flows is of practical interest in devices such as pulsation reactors and ultrasonic elevators. In addition to the resulting flow patterns, the influence of the flow on heat and mass transfer is often important. The state of the art in this area is already quite well developed with many different models, theories, and experiments published. However, only small parameter ranges of the behaviour of particles in pulsating and oscillating flows are considered, while an overarching theoretical framework does not yet exist. Therefore, this work presents a three-stage model for the behaviour of solid single particles in oscillating (pulsating) flows. The relative velocity between particle and fluid as well as the flow patterns around the particle, together with the heat and mass transfer at the particle are considered. The model levels build on top of each other, with the introduced ϵ-Re plain as a common connection between the levels. The number of input parameters could be limited to the five most important ones (fluid velocity amplitude, fluid oscillation frequency, fluid temperature, particle diameter, particle density), but these are considered in very large ranges. The relative velocity is largely calculated analytically using various flow resistance approaches. Direct numerical simulations were carried out to qualitatively estimate the flow patterns around the particle. The quantitative determination of a meta correlation for the entire ϵ-Re plane was carried out using 33 data sets from the literature. Conditions in pulsation reactors are particularly emphasized and their influence investigated.:Chapter 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Material Treatment in the Pulsation Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. Particle Motion in an Oscillating Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. Steady Streaming (Flow Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. Heat and Mass Transfer in Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. Heat and Mass Transfer in Pulsating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. Non-continuum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4. Basic Assumptions and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Forces on the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. Motion of Particles - Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6. Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. The ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 5. Motion of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1. Drag Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Slip Velocity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3. Particle Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4. Navigation in the ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5. Extension of the Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6. Additional Effects at Micro Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7. Analytical Particle Motion - Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 61 Chapter 6. Flow Patterns in the Vicinity of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1. Creeping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2. Quasi-steady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3. Steady Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 7. Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2. The Quasi-Steady HMT Area of the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Models for Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4. Meta Correlation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5. Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6. Quasi-Steady Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.7. Heat and Mass Transfer to Small Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.8. Conclusion of Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 8. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1. Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2. Inŕuence of input parameters on the HMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor . . . . . . . . . . . . . . 91 8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 9. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. Derivation and Solution of Particle Motion in the Stokes Model . . . . . i Appendix B. Derivation and Solution of Particle Motion in the Landau & Lifshitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Appendix C. Derivation of Deviation between Stokes and Schiller & Naumann . . . . x Appendix D. Parameters and Algorithm of the Direct Numerical Simulation and Flow Pattern Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Appendix E. Conducted Data Preparation for HMT Models . . . . . . . . . . . . . . . . . . . . . . xv / Das Verhalten von Partikeln in pulsierenden und oszillierenden Strömungen findet praktisches Interesse in Apparaten wie Pulsationsreaktoren und Ultraschalllevitatoren. Dabei ist neben den entstehenden Strömungsmustern oft der Einfluss der Strömung auf den Wärme- und Stoffübergang von Bedeutung. Der Stand der Technik in der Literatur in diesem Bereich ist bereits recht weit entwickelt mit vielen verschiedenen Modellen, Theorien und Experimenten. Dabei werden jedoch stets nur kleine Parameterbereiche des Verhaltens von Partikeln in pulsierenden und oszillierenden Strömungen betrachtet, während ein übergreifender theoretischer Rahmen noch nicht existiert. Deshalb wird in dieser Arbeit ein dreistufiges Modell vorgestellt für das Verhalten von festen Einzelpartikeln in oszillierenden (pulsierenden) Fluidströmungen. Sowohl die Relativgeschwindigkeit zwischen Partikel und Fluid als auch die Strömungsmuster um das Partikel und der Wärme- und Stoffübergang am Partikel werden hierbei betrachtet. Die Modellebenen bauen aufeinander auf, wobei die eingeführte ϵ-Re-Ebene die Modellebenen miteinander verbinden. Die Anzahl der Eingangsparameter konnte auf die wichtigsten fünf (Fluidgeschwindigkeitsamplitude, Fluidoszillationsfrequenz, Fluidtemperatur, Partikeldurchmesser, Partikeldichte) begrenzt werden, diese werden jedoch in sehr großen Bereichen betrachtet. Die Relativgeschwindigkeit wird mittels verschiedener Strömungswiderstandsansätze größtenteils analytisch berechnet. Zur qualitativen Abschätzung der Strömungsmuster um das Partikel wurden direkte numerische Simulationen durchgeführt. Die quantitative Bestimmung einer Metakorrelation für die gesamte ϵ-Re-Ebene wurde mittels 33 Datensätze aus der Literatur durchgeführt. Dabei werden Bedingungen in Pulsationsreaktoren besonders herausgestellt und deren Einfluss untersucht.:Chapter 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Material Treatment in the Pulsation Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. Particle Motion in an Oscillating Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. Steady Streaming (Flow Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. Heat and Mass Transfer in Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. Heat and Mass Transfer in Pulsating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. Non-continuum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4. Basic Assumptions and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Forces on the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. Motion of Particles - Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6. Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. The ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 5. Motion of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1. Drag Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Slip Velocity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3. Particle Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4. Navigation in the ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5. Extension of the Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6. Additional Effects at Micro Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7. Analytical Particle Motion - Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 61 Chapter 6. Flow Patterns in the Vicinity of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1. Creeping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2. Quasi-steady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3. Steady Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 7. Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2. The Quasi-Steady HMT Area of the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Models for Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4. Meta Correlation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5. Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6. Quasi-Steady Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.7. Heat and Mass Transfer to Small Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.8. Conclusion of Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 8. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1. Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2. Inŕuence of input parameters on the HMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor . . . . . . . . . . . . . . 91 8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 9. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. Derivation and Solution of Particle Motion in the Stokes Model . . . . . i Appendix B. Derivation and Solution of Particle Motion in the Landau & Lifshitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Appendix C. Derivation of Deviation between Stokes and Schiller & Naumann . . . . x Appendix D. Parameters and Algorithm of the Direct Numerical Simulation and Flow Pattern Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Appendix E. Conducted Data Preparation for HMT Models . . . . . . . . . . . . . . . . . . . . . . xv
32

Doped Organic Micro-Thermoelectric Coolers with Rapid Response Time

Wang, Shu-Jen, Wohlrab, Steve, Reith, Heiko, Berger, Dietmar, Kleemann, Hans, Nielsch, Kornelius, Leo, Karl 19 April 2024 (has links)
Local thermal management has important implications regarding comfort, energy consumption, and electronic device performance/lifetime. While organic thermoelectrics have emerged as promising materials for flexible thermoelectric energy harvesting devices, their potential as Peltier cooling element has been largely overlooked. Here, micro-thermoelectric coolers based on doped small molecule thin-films with a fast response time (around 25 µs) which is among the fastest micro-thermoelectric coolers reported are presented. This experimental cooling performance is supported by simulation using the finite-element method for thermal transport. The results show that organic thermoelectrics offer great potential for flexible and wearable micro-thermoelectric cooling applications.
33

Energy transfer during molten fuel coolant interaction / Energieübertragung während Schmelze-Wasser-Interaktion

Spitznagel, Niko January 2017 (has links) (PDF)
The contact of hot melt with liquid water - called Molten Fuel Coolant Interaction (MFCI) - can result in vivid explosions. Such explosions can occur in different scenarios: in steel or powerplants but also in volcanoes. Because of the possible dramatic consequences of such explosions an investigation of the explosion process is necessary. Fundamental basics of this process are already discovered and explained, such as the frame conditions for these explosions. It has been shown that energy transfer during an MFCI-process can be very high because of the transfer of thermal energy caused by positive feedback mechanisms. Up to now the influence of several varying parameters on the energy transfer and the explosions is not yet investigated sufficiently. An important parameter is the melt temperature, because the amount of possibly transferable energy depends on it. The investigation of this influence is the main aim of this work. Therefor metallic tin melt was used, because of its nearly constant thermal material properties in a wide temperature range. With tin melt research in the temperature range from 400 °C up to 1000 °C are possible. One important result is the lower temperature limit for vapor film stability in the experiments. For low melt temperatures up to about 600 °C the vapor film is so unstable that it already can collapse before the mechanical trigger. As expected the transferred thermal energy all in all increases with higher temperatures. Although this effect sometimes is superposed by other influences such as the premix of melt and water, the result is confirmed after a consequent filtering of the remaining influences. This trend is not only recognizable in the amount of transferred energy, but also in the fragmentation of melt or the vaporizing water. But also the other influences on MFCI-explosions showed interesting results in the frame of this work. To perform the experiments the installation and preparation of the experimental Setup in the laboratory were necessary. In order to compare the results to volcanism and to get a better investigation of the brittle fragmentation of melt additional runs with magmatic melt were made. In the results the thermal power during energy transfer could be estimated. Furthermore the model of “cooling fragments “ could be usefully applied. / Das Zusammentreffen von heißer Schmelze mit flüssigem Wasser (Schmelze-Wasser-Interaktion) - auf Englisch Molten-Fuel-Coolant-Interaction (MFCI) - kann zu heftigen Explosionen führen. Diese Explosionen sind in verschiedenen Szenarien möglich: in Stahl- und Kraftwerken, aber auch bei Vulkanen. Wegen der möglichen dramatischen Folgen solcher Explosionen ist eine Erforschung dieser Explosionsvorgänge notwendig. Wesentliche Grundlagen, unter welchen Voraussetzungen Schmelze-Wasser-Interaktionen zu Explosionen führen können, und der Ablauf dieser Vorgänge wurden weitgehend erforscht. Wie diese Forschungen gezeigt haben, kann die übertragene Energie bei diesen Vorgängen wegen positiver Rückkopplungsprozesse sehr hoch sein. Bislang wurden aber noch nicht in ausreichendem Maß die Einflussparameter auf die Energieübertragung und damit auf die Explosionsheftigkeit geprüft. Ein wichtiger Parameter ist die Schmelzetemperatur, da von ihr abhängt, wie viel thermische Energie freigesetzt werden kann. Die Untersuchung des Einflusses dieses Parameters ist das Hauptziel der vorliegenden Arbeit. Hierfür wurde bei den meisten Versuchen metallische Zinnschmelze verwendet, da die Materialwerte von Zinn über einen weiten Temperaturbereich annähernd konstant sind, von denen die Wärmeübertragung abhängt. Mit dieser Zinnschmelze war die Untersuchung der Schmelzetemperatur im Bereich von 400 °C bis 1000 °C möglich. Ein wesentliches Ergebnis zeigt die Abhängigkeit der Dampffilmstabilität von der Schmelzetemepratur. Bei niedrigen Schmelzetemperaturen bis etwa 600 °C ist der Dampffilm so instabil, dass er in den Experimenten bereits vor einer mechanischen Erschütterung zusammenbrach, die zu seiner Zerstörung eingesetzt wurde. Wie erwartet ist zu erkennen, dass mit höherer Schmelzetemperatur grundsätzlich mehr Energie umgesetzt werden kann. Obwohl dieser Effekt von weiteren Einflüssen auf die Explosionsstärke unter bestimmten Umständen überdeckt werden kann, wird dieses Ergebnis nach einer konsequenten Filterung der übrigen Einflüsse bestätigt. Diese Tendenz ist nicht nur an den berechneten übertragenen Gesamtenergiemengen erkennbar, sondern auch an den einzelnen Effekten wie z. B. der Fragmentation oder der Wasserverdampfung. Aber auch die weiteren Einflüsse auf die Energieübertragung wie z. B. die Vorvermischung von Schmelze und Wasser zeigten im Rahmen dieser Arbeit und der durchgeführten Experimente interessante Ergebnisse. Um diese Versuche durchführen zu können, waren die Einrichtung und Vorbereitung einer Versuchsanlage erforderlich. Zum Vergleich mit dem Vulkanismus und zur besseren Untersuchung der Feinfragmentation während ärmeübertagung wurden Versuche mit magmatischer Schmelze durchgeführt. In den Ergebnissen konnten thermische Leistungen während der Schmelze-Wasser-Interaktion bestimmt werden. Außerdem konnte das aufgestellte Modell der “kühlenden Fragmente “ sinnvoll angewendet werden.
34

High Power GaN/AlGaN/GaN HEMTs Grown by Plasma-Assisted MBE Operating at 2 to 25 GHz

Waechtler, Thomas, Manfra, Michael J, Weimann, Nils G, Mitrofanov, Oleg 27 April 2005 (has links) (PDF)
Heterostructures of the materials system GaN/AlGaN/GaN were grown by molecular beam epitaxy on 6H-SiC substrates and high electron mobility transistors (HEMTs) were fabricated. For devices with large gate periphery an air bridge technology was developed for the drain contacts of the finger structure. The devices showed DC drain currents of more than 1 A/mm and values of the transconductance between 120 and 140 mS/mm. A power added efficiency of 41 % was measured on devices with a gate length of 1 µm at 2 GHz and 45 V drain bias. Power values of 8 W/mm were obtained. Devices with submicron gates exhibited power values of 6.1 W/mm (7 GHz) and 3.16 W/mm (25 GHz) respectively. The rf dispersion of the drain current is very low, although the devices were not passivated. / Heterostrukturen im Materialsystem GaN/AlGaN/GaN wurden mittels Molekularstrahlepitaxie auf 6H-SiC-Substraten gewachsen und High-Electron-Mobility-Transistoren (HEMTs) daraus hergestellt. Für Bauelemente mit großer Gateperipherie wurde eine Air-Bridge-Technik entwickelt, um die Drainkontakte der Fingerstruktur zu verbinden. Die Bauelemente zeigten Drainströme von mehr als 1 A/mm und Steilheiten zwischen 120 und 140 mS/mm. An Transistoren mit Gatelängen von 1 µm konnten Leistungswirkungsgrade (Power Added Efficiency) von 41 % (bei 2 GHz und 45 V Drain-Source-Spannung) sowie eine Leistung von 8 W/mm erzielt werden. Bauelemente mit Gatelängen im Submikrometerbereich zeigten Leistungswerte von 6,1 W/mm (7 GHz) bzw. 3,16 W/mm (25 GHz). Die Drainstromdispersion ist sehr gering, obwohl die Bauelemente nicht passiviert wurden.
35

Vernetzungsgrad unter der Lupe : Zerstörungsfreie Prüfung mit unilateraler NMR / Application of single-sided NMR for the non-destructive testing of the degree of cross-linking of adhesives and cross-linked plastic parts

Halmen, Norbert January 2021 (has links) (PDF)
Der Vernetzungsgrad von Klebstoffen und strahlenvernetzter Kunststoffformteile beeinflusst zahlreiche Materialeigenschaften und ist von essenzieller Bedeutung für die Funktionalität von Klebeverbindungen und die Beständigkeit medizinischer Implantate. Die zerstörungsfreie Prüfung dieser Qualitätsgröße ist von großem industriellem Interesse, aber noch nicht Stand der Technik. Die unilaterale Kernspinresonanz (uNMR) ist ein vielversprechendes Verfahren zur Lösung dieser Problematik. In diesem Buch wird die nicht-invasive Vernetzungsgradprüfung von strahlenvernetztem UHMWPE und verschiedenen Klebstoffen mittels uNMR demonstriert. Auf Basis der guten Korrelation mit praxisrelevanten Referenzmethoden (thermisch, rheologisch, dielektrisch) wurden Vergleichsmodelle entwickelt, welche Anwendern von Klebstoffen und vernetzten Kunststoffformteilen den Einsatz der uNMR zur zerstörungsfreien Qualitätssicherung ermöglichen. / The degree of curing is a central quality feature of adhesives, which influences numerous material properties and is therefore of crucial importance for adhesive bonds. The same applies to the degree of cross-linking of radiation-cross-linked plastic components as used in the field of medical implants. The non-destructive testing of this property is still of great interest, both from the industrial and research perspective, but not possible yet. With unilateral or single-sided nuclear magnetic resonance (uNMR) a method that has the potential to solve this problem has been available for several years. However, this method has not been implemented on an industrial scale up to now. Reasons for this may be the lack of application-specific knowledge or the reluctance to use an allegedly complicated technology. Within the scope of this work the application of this measuring technique for non-destructive testing of the degree of cross-linking and curing on different material systems was evaluated. Besides radiation-cross-linked polyethylene with ultra-high molecular weight (UHMWPE-Xc) a selection of different adhesives with various reaction mechanisms and their adhesive bonds were investigated. The results of the uNMR measurements were compared to a variety of reference methods commonly used in practice to characterize cross-linked plastics, adhesives and bonded joints and evaluated with regard to their informative value. Temperature monitoring for the magnets and the test specimens was integrated into the uNMR system in order to monitor the temperature effects of various standard measuring sequences and the employed reactive materials as well as the influence of the ambient temperature. For the evaluation of the uNMR measurements, different methods were compared to one another. On the one hand, multi-component fits were employed to determine the characteristic relaxation times, taking into account different material phases. On the other hand, echo-based methods (binning, echo sums, weighting) were used. It could be demonstrated that normalized echo sums are very well suited for quantifying the curing of adhesives – directly in the bond – and for characterizing the degree of cross-linking of UHMWPE-Xc. Material components with specific T2eff relaxation times can also be described in a targeted manner, by also considering the echo sum ratios. The uNMR results showed a good correlation with the applied reference methods (differential scanning calorimetry, dielectric analysis, rheological investigations in plate/plate rheometer). On this basis corresponding comparison models could be developed. These illustrate the potential applications of uNMR for non-destructive quality assurance to users of adhesives and cross-linked plastic components. / Der Aushärtegrad von Klebstoffen ist ein zentrales Qualitätsmerkmal, welches zahlreiche Materialeigenschaften beeinflusst und daher auch für die Klebeverbindungen von entscheidender Bedeutung ist. Gleiches gilt für den Vernetzungsgrad von strahlenvernetzten Kunststoffformteilen, wie sie im Implantatbereich eingesetzt werden. Die zerstörungsfreie Prüfung (ZfP) dieser Kenngrößen ist nach wie vor von großem Interesse, sowohl von industrieller als auch Forschungsseite, allerdings bisher nicht Stand der Technik. Mit der unilateralen oder einseitigen Kernspinresonanz (uNMR, engl. unilateral nuclear magnetic resonance oder oft auch single-sided NMR genannt) steht seit einigen Jahren ein Verfahren zur Verfügung, welches das Potenzial hat, die genannte Problematik zu lösen. Eine industrielle Umsetzung erfolgte bis dato jedoch nicht. Gründe hierfür können das Fehlen von anwendungsspezifischem Basiswissen oder die Scheu vor dem Einsatz einer vermeintlich komplizierten Technik sein. Im Rahmen dieser Arbeit wurde der Einsatz dieses Messverfahrens zur ZfP des Vernetzungs- und Aushärtegrades an verschiedenen Materialsystemen evaluiert. Neben strahlenvernetztem Polyethylen mit ultrahohem Molekulargewicht (UHMWPE-Xc) wurden eine Auswahl an verschiedenen Klebstoffen mit unterschiedlichen Reaktionsmechanismen und deren Klebeverbindungen untersucht. Die Ergebnisse der uNMR-Messungen wurden mit verschiedenen praxisrelevanten Referenzmethoden zur Charakterisierung vernetzter Kunststoffe, Klebstoffe und Klebeverbindungen verglichen und hinsichtlich ihrer Aussagekraft bewertet. In das verwendete uNMR-System wurde eine Temperaturüberwachung für die Magnete und die untersuchten Probekörper integriert. Damit wurden die Temperatureffekte verschiedener Standard-Messsequenzen und der eingesetzten reaktiven Materialien sowie der Einfluss der Umgebungstemperatur betrachtet. Für die Auswertung der uNMR-Messungen wurden unterschiedliche Auswerteverfahren verglichen. Einerseits wurden Multiparameter-Fits zur Bestimmung der charakteristischen Relaxationszeiten unter Berücksichtigung verschiedener Materialphasen verwendet. Andererseits kamen echobasierte Methoden (Gruppierung, Echosummen, Gewichtung) zum Einsatz. Anhand der Resultate konnte demonstriert werden, dass sich normierte Echosummen sehr gut zur Quantifizierung der Aushärtung von Klebstoffen – direkt in der Klebeverbindung – und zur Charakterisierung des Vernetzungszustands von UHMWPEXc eignen. Durch die zusätzliche Betrachtung der Echosummenverhältnisse konnten auch gezielt Materialkomponenten mit bestimmten T2eff -Relaxationszeiten beschrieben werden. Die uNMR-Ergebnisse zeigten gute Korrelationen mit den verwendeten Referenzverfahren (Dynamische Differenzkalorimetrie, Dielektrische Analyse, rheologische Untersuchungen im Platte/Platte-Rheometer). Darauf basierend konnten entsprechende Vergleichsmodelle entwickelt werden. Die Resultate verdeutlichen Anwendern von Klebstoffen und vernetzten Kunststoffformteilen die Einsatzmöglichkeiten der uNMR zur zerstörungsfreien Qualitätssicherung.
36

Laborbasierte Nano-Computertomographie mit hoher Energie für die Materialcharakterisierung und Halbleiterprüfung in Simulation und Anwendung / Laboratory Based Nano Computed Tomography with Higher Photon Energy for Materials Characterization and Semiconductor Analysis in Simulation and Practical Application

Müller, Dominik Dennis January 2023 (has links) (PDF)
Verschiedene Konzepte der Röntgenmikroskopie haben sich mittlerweile im Labor etabliert und ermöglichen heute aufschlussreiche Einblicke in eine Vielzahl von Probensystemen. Der „Labormaßstab“ bezieht sich dabei auf Analysemethoden, die in Form von einem eigenständigen Gerät betrieben werden können. Insbesondere sind sie unabhängig von der Strahlerzeugung an einer Synchrotron-Großforschungseinrichtung und einem sonst kilometergroßen Elektronen-speicherring. Viele der technischen Innovationen im Labor sind dabei ein Transfer der am Synchrotron entwickelten Techniken. Andere wiederum basieren auf der konsequenten Weiterentwicklung etablierter Konzepte. Die Auflösung allein ist dabei nicht entscheidend für die spezifische Eignung eines Mikroskopiesystems im Ganzen. Ebenfalls sollte das zur Abbildung eingesetzte Energiespektrum auf das Probensystem abgestimmt sein. Zudem muss eine Tomographieanalage zusätzlich in der Lage sein, die Abbildungsleistung bei 3D-Aufnahmen zu konservieren. Nach einem Überblick über verschiedene Techniken der Röntgenmikroskopie konzentriert sich die vorliegende Arbeit auf quellbasierte Nano-CT in Projektionsvergrößerung als vielversprechende Technologie zur Materialanalyse. Hier können höhere Photonenenergien als bei konkurrierenden Ansätzen genutzt werden, wie sie von stärker absorbierenden Proben, z. B. mit einem hohen Anteil von Metallen, zur Untersuchung benötigt werden. Das bei einem ansonsten idealen CT-Gerät auflösungs- und leistungsbegrenzende Bauteil ist die verwendete Röntgen-quelle. Durch konstruktive Innovationen sind hier die größten Leistungssprünge zu erwarten. In diesem Zuge wird erörtert, ob die Brillanz ein geeignetes Maß ist, um die Leistungsfähigkeit von Röntgenquellen zu evaluieren, welchen Schwierigkeiten die praktische Messung unterliegt und wie das die Vergleichbarkeit der Werte beeinflusst. Anhand von Monte-Carlo-Simulationen wird gezeigt, wie die Brillanz verschiedener Konstruktionen an Röntgenquellen theoretisch bestimmt und miteinander verglichen werden kann. Dies wird am Beispiel von drei modernen Konzepten von Röntgenquellen demonstriert, welche zur Mikroskopie eingesetzt werden können. Im Weiteren beschäftigt sich diese Arbeit mit den Grenzen der Leistungsfähigkeit von Transmissionsröntgenquellen. Anhand der verzahnten Simulation einer Nanofokus-Röntgenquelle auf Basis von Monte-Carlo und FEM-Methoden wird untersucht, ob etablierte Literatur¬modelle auf die modernen Quell-konstruktionen noch anwendbar sind. Aus den Simulationen wird dann ein neuer Weg abgeleitet, wie die Leistungsgrenzen für Nanofokus-Röntgenquellen bestimmt werden können und welchen Vorteil moderne strukturierte Targets dabei bieten. Schließlich wird die Konstruktion eines neuen Nano-CT-Gerätes im Labor-maßstab auf Basis der zuvor theoretisch besprochenen Nanofokus-Röntgenquelle und Projektionsvergrößerung gezeigt, sowie auf ihre Leistungsfähigkeit validiert. Es ist spezifisch darauf konzipiert, hochauflösende Messungen an Materialsystemen in 3D zu ermöglichen, welche mit bisherigen Methoden limitiert durch mangelnde Auflösung oder Energie nicht umsetzbar waren. Daher wird die praktische Leistung des Gerätes an realen Proben und Fragestellungen aus der Material¬wissenschaft und Halbleiterprüfung validiert. Speziell die gezeigten Messungen von Fehlern in Mikrochips aus dem Automobilbereich waren in dieser Art zuvor nicht möglich. / Various concepts of X-ray microscopy have become established in laboratories. Nowadays, they allow insightful analysis of a wide range of sample systems. In this context, "laboratory scale" refers to the analytical methods that operate as a stand-alone instrument. They are independent from beam generation at a large-scale synchrotron research facility with a kilometer-sized electron storage ring. Many of the technical innovations in the laboratory are transferred techniques developed at the synchrotron. Others are based on the continuous further development of previously established concepts. By itself, resolution is not decisive for the specific suitability of a microscopy system in general. The energy spectrum used for imaging should also be matched to the specimen and a tomography system must be able to preserve the imaging performance for 3D images. After an overview of different X-ray microscopy techniques, this work examines how source-based nano-CT in projection magnification is a promising technology for materials analysis. Here, higher photon energies can be used than in competing approaches as required by more absorbent samples for examination, such as those with a high metal content. The core component limiting resolution and performance in an otherwise ideal CT device is the X-ray source used. The greatest leaps in imaging performance can be expected through design innovations in the X ray source. Therefore, In the course of this work, it is discussed when brilliance is and is not an appropriate measure to evaluate the performance of X-ray sources, what difficulties practical measurement is subject to and how this affects the comparability of values. Monte Carlo simulations show how the brilliance of different designs on X-ray sources can be theoretically determined and compared, and this is demonstrated by the example of three modern concepts of X-ray sources, which can be used for microscopy. Next, this thesis considers the limits of the performance of transmission X-ray sources. Using the coupled simulation of a nano focus X-ray source based on Monte Carlo and FEM methods, this thesis investigates whether established literature models are still applicable to these modern source designs. The simulations are then used to derive a new way to determine the performance limits for nano focus X-ray sources and the advantage of modern targets made of multiple layers. Then, a new laboratory-scale nano-CT device based on the nano focus X-ray source and projection magnification is theoretically discussed before it is presented with an evaluation of its performance. It is specifically designed to enable high-resolution measurements on material systems in 3D, which were not feasible with previous methods as they were limited by a lack of resolution or energy. Therefore, the practical performance of the device can finally be validated on real samples and issues from materials science and semiconductor inspection. The shown measurements of defects in automotive microchips in this way were not previously possible.
37

Towards Full-area Passivating Contacts for Silicon Surfaces based on Al₂O₃-TiOₓ Double Layers

Tröger, David, Grube, Matthias, Knaut, Martin, Reif, Johanna, Bartha, Johann W., Mikolajick, Thomas 08 December 2021 (has links)
In order to remove the local openings for contacting PERC Solar cells, one has to introduce passivating contacts. The Al₂O₃-TiOₓ double layer stack is an attractive candidate for this purpose. This study will guide a way to enhance the conductivity of those contacts by doping TiO x with a. Additionally, it is shown, that major parts of the stacks are deposited by sputtering. This demonstrates a higher feasibility for industrial applications than atomic layer deposition as reported earlier [1], [2].
38

Prospects for energy-efficient edge computing with integrated HfO₂-based ferroelectric devices

O'Connor, Ian, Cantan, Mayeul, Marchand, Cédric, Vilquin, Bertrand, Slesazeck, Stefan, Breyer, Evelyn T., Mulaosmanovic, Halid, Mikolajick, Thomas, Giraud, Bastien, Noël, Jean-Philippe, Ionescu, Adrian, Igor, Igor 08 December 2021 (has links)
Edge computing requires highly energy efficient microprocessor units with embedded non-volatile memories to process data at IoT sensor nodes. Ferroelectric non-volatile memory devices are fast, low power and high endurance, and could greatly enhance energy-efficiency and allow flexibility for finer grain logic and memory. This paper will describe the basics of ferroelectric devices for both hysteretic (non-volatile memory) and negative capacitance (steep slope switch) devices, and then project how these can be used in low-power logic cell architectures and fine-grain logic-in-memory (LiM) circuits.
39

Conception of an integrated optical waveguide amplifier: Konzeption eines integriert-optischen Wellenleiterverstärkers

Wächtler, Thomas 12 July 2004 (has links)
The work provides an overview of different integrated optical amplifiers. Semiconductor optical amplifiers and fiber amplifiers are described, as well as devices that utilize non-linear effects, nanocrystalline materials, or photonic crystals. Dielectric materials that are doped with rare-earth ions are considered more thoroughly. After a review of the principles of their optical activity the general mechanisms of excitation and emission are described. Materials aspects regarding the spectral range, their fabrication and the solubility of the dopants follow. An erbium-doped alumina waveguide amplifier, reported earlier in the literature, is chosen as an example to demonstrate the feasibility of such components. A theoretical model of the population densities of the energy levels is derived for the simulation. By numerical methods the non-linear system of the rate equations is solved and the stability of the steady state is shown. The simulation of the amplifier demonstrates the dependence of the gain of both the excitation energy and the z-coordinate. Moreover, the superiority of an excitation wavelength of 980 nm compared to 1530 nm is shown. With the model the literature data could be reproduced. / Die Arbeit gibt einen Überblick über verschiedene Möglichkeiten der Realisierung integriert-optischer Wellenleiterverstärker. Ausgehend von optischen Halbleiter- und Faserverstärkern werden einführend ebenso Anordnungen beschrieben, die nichtlineare Effekte sowie nanokristalline Materialien und photonische Kristalle nutzen. Besondere Bedeutung kommt dielektrischen Materialien zu, die mit optisch aktiven Dotanden, bevorzugt Seltenerdionen, versehen sind. Hierbei werden die Ursachen für die optische Aktivität der Lanthanide sowie die generellen Mechanismen der Anregungs- und Emissionsprozesse beschrieben. Aspekte der Materialauswahl, vor allem hinsichtlich des verwendeten Spektralbereiches sowie bezüglich ihrer Herstellung und der Löslichkeit der Dotanden schließen sich an. Anhand eines Literaturbeispiels wird die Realisierbarkeit eines erbiumdotierten Aluminiumoxid-Wellenleiterverstärkers demonstriert. Hierfür wird ein Modell zur Simulation der Besetzungsdichten der angeregten Energieniveaus abgeleitet und mittels numerischer Methoden das sich ergebende, nichtlineare System der Ratengleichungen gelöst, wobei besonders die Stabilität des stationären Besetzungszustandes herausgearbeitet wird. Die Simulation der Verstärkeranordnung zeigt zum einen die Abhängigkeit der Verstärkung von der z-Koordinate sowie der Pumpleistung; zum anderen wird deutlich, dass die Anregung bei 980 nm der Variante bei 1530 nm überlegen ist. Mit dem verwendeten Modell konnten die Literaturdaten reproduziert werden.
40

Beitrag zur numerischen Beschreibung des funktionellen Verhaltens von Piezoverbundmodulen

Kranz, Burkhard 12 June 2012 (has links)
Die Arbeit befasst sich mit der effizienten Simulation des funktionellen Verhaltens von Piezoverbundmodulen als Aktor oder Sensor zur Schwingungsbeeinflussung mechanischer Strukturen. Ausgehend von einem FE-Modell werden über den Ansatz energetischer Äquivalenz die effektiven elektro-mechanischen Materialparameter ermittelt. Zur Berücksichtigung im Inneren der Einheitszelle liegender Elektroden werden die elektrischen Randbedingungen der Homogenisierungslastfälle angepasst. Die Homogenisierungslastfälle werden auch genutzt, um Phasenkonzentrationen für die Beanspruchungen der Verbundkomponenten zu ermitteln. Diese Phasenkonzentrationen werden eingesetzt, um aus dem effektiven Gesamtmodell die Beanspruchungen der Komponenten zu extrahieren. Zur dynamischen Modellbildung wird die Zustandsraumbeschreibung verwendet. Die Überführung einer piezo-mechanischen FE-Diskretisierung in ein Zustandsraummodell gelingt mit der Betrachtung der mechanischen Freiheitsgrade als Zustandsvariablen. Zur Abbildung der elektrischen Impedanz im Zustandsraum muss die elektrische Kapazitätsmatrix als Durchgangsmatrix einbezogen werden. Die Reduktion des Zustandsraums basiert auf der modalen Superposition. Die modale Transformationsbasis wird um Moden ergänzt, die die Verformung bei statischer elektrischer Erregung charakterisieren. Die Zustandsraumbeschreibung wird sowohl für eine Potential- als auch für eine Ladungserregung ausgeführt. Das Zustandsraummodell wird unter Verwendung von Filtermatrizen um Ausgangssignale für die mechanischen und elektrischen Beanspruchungsgrößen erweitert. Dies gestattet eine Kopplung der Zustandsraummodelle mit den Beanspruchungsanalysen. Die Anwendung der Berechnungsmethode wird am Beispiel der im SFB/TRR PT-PIESA entwickelten Piezo-Metall-Module demonstriert, die durch direkte Integration von piezokeramischen Basiselementen in Blechstrukturen gekennzeichnet sind.:1 Einleitung 2 Grundlagen 3 Stand der Forschung 4 Beanspruchungsermittlung für piezo-mechanische Verbunde 5 Zustandsraumbeschreibung piezo-mechanischer Systeme 6 Gesamtmodell 7 Zusammenfassung / This thesis deals with the efficient simulation of the functional behaviour of piezo composite modules for applications as actuators or sensors to influence vibrations of machine structures. Based on a FE-discretisation the effective electro-mechanical material parameters of the piezo composite modules are determined with an ansatz of energetic equivalence. To consider electrodes which are located inside the representative volume element the electrical boundary conditions of the load cases for homogenisation are adapted. The load cases for homogenisation are also used to determine the phase concentrations (or fluctuation fields) of stress/strain and electric field/electric displacement field in the composite constituents. These phase concentrations are required to extract stress and strain of the composite components based on the overall model with effective material parameters. For dynamical modelling a state space representation is used. The transformation of a FE-discretisation of the piezo-mechanical system into a state space model is possible by choosing the mechanical degree of freedom as state variables. For consideration of the electrical impedance in the state space model the electrical stiffness respectively capacitance matrix has to incorporate as feedthrough matrix. The dynamical model reduction of the state space model is based on modal superposition. For the correct reproduction of the electrical impedance the modal transformation basis has to be amended by deformation modes which represent the deformation behaviour due to static electrical excitation at the electrodes. The state space representation is built for potential and charge excitation. The state space model is enhanced by filter matrices to incorporate output signals for stress/strain and also for electric field/electric displacement field. This allows the coupling of the state space models with the stress analyses. The application of the simulation method is demonstrated using the example of the piezo-metal-modules developed in the CRC/TR PT-PIESA (German: SFB/TRR PT-PIESA). These piezo-metal-modules are characterised by direct integration of piezoceramic base elements in sheet metal structures.:1 Einleitung 2 Grundlagen 3 Stand der Forschung 4 Beanspruchungsermittlung für piezo-mechanische Verbunde 5 Zustandsraumbeschreibung piezo-mechanischer Systeme 6 Gesamtmodell 7 Zusammenfassung

Page generated in 0.0288 seconds