• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 129
  • 45
  • Tagged with
  • 434
  • 434
  • 349
  • 347
  • 347
  • 71
  • 63
  • 37
  • 33
  • 31
  • 31
  • 30
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Dynamic modeling of hysteresis-free negative capacitance in ferroelectric/dielectric stacks under fast pulsed voltage operation

Hoffmann, M., Slesazeck, S., Mikolajick, T. 26 January 2022 (has links)
To overcome the fundamental limit of the transistor subthreshold swing of 60 mV/dec at room temperature, the use of negative capacitance (NC) in ferroelectric materials was proposed [1]. Due to the recent discovery of ferroelectricity in CMOS compatible HfO₂ and ZrO₂ based thin films [2], [3], the promise of ultra-low power steep-slope devices seems within reach. However, concerns have been raised about switching-speed limitations and unavoidable hysteresis in NC devices [4], [5]. Nevertheless, it was shown that NC effects without hysteresis can be observed in fast pulsed voltage measurements on ferroelectric/dielectric capacitors [6], which was recently confirmed using ferroelectric Hf₀.₅ Zr₀.₅ O₂[7], [8]. While in these works only the integrated charge after each pulse was studied, here we investigate for the first time if the transient voltage and charge characteristics are also hysteresis-free.
182

Retention Characteristics of Hf₀.₅Zr₀.₅O₂-based Ferroelectric Tunnel Junctions

Max, Benjamin, Mikolajick, Thomas, Hoffmann, Michael, Slesazeck, Stefan 26 January 2022 (has links)
We report on the retention properties of double-layer hafnium zirconium oxide (Hf₀.₅Zr₀.₅O₂; HZO) based ferroelectric tunnel junctions (FTJ). Utilizing HZO as the ferroelectric layer and aluminum oxide (Al₂ O₃) as the tunneling barrier a scalable FTJ memory operation with good endurance and an on/off ratio of about 10 was achieved. Due to inherent depolarization fields from the double layer structure, the device suffers from strong retention loss over time. An extrapolation to 10 years at room temperature shows vanishing differences between the on and off state currents. We propose a way to avert this retention loss by using a constant bias that can be built-in by a work function difference from the metal electrode. This leads to more stable on-current retention and only small off-current increase, giving rise to an improved retention behavior of the FTJ.
183

Fulcrum: Versatile Network Codes for Heterogeneous Communication Networks

Nguyen, Vu 14 January 2022 (has links)
Two main approaches to achieve reliable data transfer over error-prone networks are retransmission and Forward Error Correction (FEC). Retransmission techniques retransmit packets when they are lost or despaired, causing significant delays, especially on multihop connections. On the contrary, to reduce latency FEC sends redundant data together with the original one. In particular, FEC through Random Linear Network Coding (RLNC) reduces the number of distinct packet transmissions in a network and minimizes packet transmissions due to poor network conditions. Consequently, RLNC has the potential to both improve energy efficiency and reduce the overall latency in a network. Fulcrum network coding (FNC), proposed as an RLNC's variation, has partly solved the challenge of heterogeneous communication networks by providing two-layer coding, enabling the destinations to decode packets based on their computing capabilities. However, coding parameters are statically chosen before data transmission, while using feedback or retransmission is impractical in rapidly changing network conditions. FNC is unadaptable to the available capabilities of nodes in a network and thus negatively impacts the coding performance. The main objective of this thesis is to design a versatile network coding scheme supporting heterogeneous communication networks that allow a node to adjust and adapt the coding process depending on the network condition and computing capabilities of the node. The research also focuses on reducing computational complexity in nodes while maintaining a high successful decoding probability and employing as simple operations as possible in intermediate nodes. Particularly, three main approaches are investigated in a source, intermediate, and destination node to achieve the objectives. First, the research examines both static and dynamic combinations of original packets in the encoding process by proposing dynamic sparsity and expansion packets (DSEP). This scheme significantly increases the coding throughput at both source and destination. Second, a new recoding scheme is proposed to manage the number of packets stored and recoded. Thus, this recoding scheme reduces memory usage and computing complexity at intermediate nodes, processing huge traffic. Finally, the research proposes adaptive decoding algorithms, which allow the destinations to choose the proper decoder depending on the network conditions. These algorithms improve the decoding probability in an unreliable network while reducing the computational complexity in a reliable network. For each proposed approach, both mathematical analysis and practical implementation were performed. Especially, the implementation leverages Kodo, a well-known network coding library for simulation and real-time implementation using during the last decade.:Abstract Acknowledgements List of Tables List of Figures Abbreviations and Symbols 1 Introduction 1.1 Fundamentals 1.2 Research motivation 1.3 Objectives 1.4 Methodology 1.5 Main contributions 1.5.1 Summary 1.5.2 List of publications 1.6 Thesis organization 2 Background and Related Work 2.1 RLNC and its variations 2.2 FNC: General principles and coding specification 2.2.1 General principles 2.2.2 Encoding specification 2.2.3 Decoding specification 2.3 Related work 2.4 Analysis of FNC performance 2.4.1 Preliminaries: MDS outer code property for theoretical analysis 2.4.2 Delay modelling: Number of required packet receptions for decoding 2.4.3 Decoding probability 2.4.4 Decoding probability for broadcast to heterogeneous destinations 2.4.5 Overhead 2.4.6 Throughput 2.5 Summary and discussion 3 Sparse Fulcrum Network Coding 3.1 Introduction 3.2 Encoding and decoding implementations 3.2.1 Encoding implementation 3.2.2 Decoding implementation 3.3 Integrating sparsity into FNC 3.3.1 Sparse inner and outer encoding 3.3.2 Sparse recoding and decoding 3.3.3 Evaluation setup 3.3.4 Throughput results 3.3.5 Decoding probability results 3.4 Summary 4 DSEP Fulcrum: Dynamic Expansion Packets and Sparsity 4.1 Introduction 4.2 Probability of linearly independent coded packets 4.3 Dynamic sparsity and expansion packets 4.3.1 Dynamic sparsity 4.3.2 Dynamic expansion packets 4.3.3 Sparsity level as a function of number of expansion packets and decoder rank 4.4 DSEP schemes 4.4.1 Example scheme: Dynamic sparsity with expansion packets region-based 4.4.2 Example scheme: Dynamic sparsity with expansion packets stepping up 4.5 Evaluation of DSEP schemes 4.5.1 Throughput results 4.5.2 Decoding probability results 4.5.3 Impact of feedback and packet losses 4.5.4 Energy consumption in IoT devices 4.6 Summary 5 Exploring Benefits of Recoding 5.1 Introduction 5.2 Recoding principle 5.3 Recoding scheme 5.3.1 General idea 5.3.2 An unlimited buffer recoding 5.3.3 A limited buffer recoding 5.4 Evaluation 5.4.1 Coding overhead 5.4.2 Recoding and decodinEvaluation.5 Summary 6 Adaptive Decoding for Fulcrum Codes 6.1 Introduction 6.2 Adaptive Fulcrum decoder 6.2.1 Motivating example 6.2.2 Adaptive Fulcrum decoding algorithm 6.3. Advanced adaptive Fulcrum decoder 6.3.1 Principles 6.3.2 Advanced adaptive Fulcrum decoding algorithm 6.4 Analysis 6.4.1 Decoding delay 6.4.2 Decoding probability 6.4.3 Overhead 6.5 Evaluation of adaptive Fulcrum decoding algorithms 6.5.1 Performance metrics 6.5.2 Evaluation results 6.6 Summary 7 Conclusion and Future Work 7.1 Summary and main contributions 7.2 Future work A Reed-Solomon Outer Code: Proof of Full Rank Property of Remapped Packets Bibliography
184

Robust and Low-Complexity Waveform Design for Wireless Communications Systems Under Doubly Dispersive Channels

Bomfin, Roberto 14 January 2022 (has links)
With the recent advancements of wireless networks to satisfy new requirements, the investigation of novel transmission schemes to improve the link level performance is of major importance. A very common technique utilized in nowadays systems is the Orthogonal frequency division multiplexing (OFDM) waveform, which has been adopted by several standards, including WiFi, LTE, and more recently 5G, due to its simple equalization process. Despite its success, this dissertation shows that OFDM is a sub-optimal scheme under frequency-selective channel (FSC), when channel state information (CSI) is available at the receiver only. Based on the coded modulation capacity approach, this work demonstrates that the data symbols should experience the same channel gain in order to achieve the best performance, leading to the equal gain criterion (EGC). However, this comes at a cost in terms of losing orthogonality among data symbols. The result is valid for linear modulation matrices under the assumptions of CSI at only at the receiver with perfect feedback equalization. In order to attain the EGC for doubly-dispersive channels, the block multiplexing (BM) waveform is proposed in this thesis, where the data symbols are spread in frequency and time. For instance, the recently conceived orthogonal time frequency space (OTFS) is shown to be a particular case of BM with the classical single-carrier (SC). Regarding the equalization for the robust waveforms, it is shown that the minimum mean squared error with parallel interference cancellation (MMSE-PIC) employed together with convolutional encoder and soft decoder can completely remove the inter-symbol interference (ISI), where a low-complexity implementation is designed. In addition, a waveform with decreased complexity based on the sparse Walsh-Hadamard (SWH) is proposed for two reasons, i) sparse spreading requires a transform with lower size, ii) the Walsh-Hadamard transform is implemented with 1s and −1s, which requires less complexity than fast Fourier transform (FFT) based waveforms. Furthermore, the problem of estimating the time varying channel is considered, where a unique word (UW) or (pilot block) based approach is studied. In this regard, another main contribution of this dissertation is to develop an optimization framework, where the combination of channel estimation plus Doppler spread error is minimized. In particular, the composite error minimization is achieved by properly setting the FFT size of the system, for a fixed data length. Lastly, cyclic prefix (CP)-free system is considered such that the transmission time is decreased, and therefore provides a better channel estimation. Naturally, the CP-free system has undesirable interference, which is resolved by an iterative CP-Restoration algorithm. In this case, we extend the EGC to equal reliability criterion (ERC), i.e., the data symbols should be equally reliable and not only have equal gain. As a consequence, the BM with orthogonal chirp division multiplexing (OCDM) waveform has the best performance due to equal time and frequency spreading. In conclusion, the coded modulation capacity approach of this dissertation provides new insights and solutions to improve the performance of wireless systems.
185

Untersuchung des elektronischen Transports an 28nm MOSFETs und an Schottky-Barrieren FETs aus Silizium-Nanodrähten

Beister, Jürgen 19 January 2019 (has links)
As modern microelectronics advances, enormous challenges have to be overcome in order to further increase device performance, enabling highspeed and ultra-low-power applications. With progressive scaling of Silicon MOSFETs, charge carrier mobility has dropped significantly and became a critical device parameter over the last decade. Present technology nodes make use of strain engineering to partially recover this mobility loss. Even though carrier mobility is a crucial parameter for present technology nodes, it cannot be determined accurately by methods typically available in industrial environments. A major objective of this work is to study the magnetoresistance mobility μMR of strained VLSI devices based on a 28 nm ground rule. This technique allows for a more direct access to charge carrier mobility, compared to conventional current/ voltage and capacitance/ voltage mobility derivation methods like the effective mobility μeff, in which series resistance, inversion charge density and effective channel length are necessary to extract the mobility values of the short channel devices. Aside from providing an anchor for accurate μeff measurements in linear operation conditions, μMR opens the possibility to investigate the saturation region of the device, which cannot be accessed by μeff. Electron and hole mobility of nFET and pFET devices with various gate lengths are studied from linear to saturation region. In addition, the interplay between mobility enhancement due to strain improvement, and mobility degradation due to short channel effects with decreasing channel length is analyzed. As a concept device for future nanoelectronic building blocks, silicon nanowire Schottky field-effect transistors are investigated in the second part of this work. These devices exhibit an ambipolar behaviour, which gives the opportunity to measure both electron and hole transport on a single device. The temperature dependence of the source/drain current for specific gate and drain voltages is analyzed within the framework of voltage dependent effective barrier heights.:1. Einleitung 2. Theoretische Grundlagen 3. Charakterisierungsmethoden 4. Messaufbau 5. Ergebnisse der Untersuchungen an MOSFETs 6. Ergebnisse der Untersuchungen an SiNW Transistoren 7. Zusammenfassung Anhang Danksagungen
186

Entwicklung eines Verfahrens zur Mustererkennung für die Analyse von Gasen mittels Impedanzspektroskopie

Li, Fei 12 February 2019 (has links)
1. Zielstellung der Arbeit war die Entwicklung von Musterkennungsmethoden zur automatischen Klassifizierung von Gasen. Um dieses Ziel zu erreichen, wurde die Reduktionsmethode Parameterabschätzung mittels Adaptive-Simulated-Annealing (ASA-PE) und eine Committee machine (CM) zur Klassifikation entwickelt. 2. Mittels PEDOT:PSS-Sensoren wurden mit Hilfe der Impedanzspektroskopie NH3 und NO2 in unterschiedlichen Konzentrationen gemessen. Die aufgenommenen Messdaten wurden durch die ASA-PE, die Komplexe Haupt-komponentenanalyse (CPCA) und die Discriminant analyses via Support Vector (SVDA) reduziert. 3. Der Vergleich der Merkmalsextraktionsmethoden zeigt: Die in dieser Arbeit neu entwickelte Methode ASA-PE liefert im Vergleich dazu ein sicheres Segmentierungs-Ergebnis. 4. Der Vergleich zwischen ASA-PE und ZView zeigt, dass die ASA-PE eine sichere Methode für die automatisierte Gasanalyse ist. Aber bei zweidimensionalen Merkmalen gibt es einen Bereich, in dem sich eine gemeinsame Häufung einstellt, welche zu einer Irritation in der Auswertung von CPCA und SVDA führen kann. Dieses Problem kann durch eine Erhöhung der Anzahl von Merkmalen gelöst werden. 5. Es wurden sechs die Klassifikationsmethoden: Abstandsgewichtete k-Nächste-Nachbarn-Klassifikation (DW-kNN), das mehrlagige Perzeptron (MLP), Support Vector Machine (SVM), CM, CM ohne MLP und CM mit Abstandskontrolle und AAi-Filter untersucht und miteinander verglichen. Um die Klassifikationsmethoden anzulernen wurden alle Merkmalsreduktions-ergebnisse der CPCA, SVDA und der ASA-PE in Trainings- und Testdaten eingeteilt. 6. Die Ergebnisse zeigen, dass die Kombination aus One-Against-All-SVM (OAA-SVM) und ASA-PE die besten Erkennungsraten liefert. Bei 200 Trainingsdatensätzen wird eine Erkennungsrate von bis zu 99.5% erzielt. Durch diese Kombination können jedoch nur 8 Typen ohne Identifikation von unbekannten Typen ermittelt werden. 7. Wenn das MLP aus CM entfernt wird, werden die Resultate von CM leicht verbessert. Mit Hilfe von 6-Sigma zeigt CM ohne MLP eine gute Erkennungsrate für unbekannte Gase und gleichzeitig bleibt die Erkennungsrate auf einem befriedigenden Niveau. 8. Die Streuung der ASA-PE führt zu einer schlechten Abgrenzung zwischen bekannten und unbekannten Gasen. Stattdessen zeigt die Kombination von CM ohne MLP und CPCA in diesem Fall eine gute Abgrenzung.:Abstract II Danksagung III Inhaltsverzeichnis IV Abkürzungen VII 1 Einführung 1.1 Einleitung 1.2 Entwicklungen bei Gassensoren 1.2.1 Fortschritte bei Material und Messmethode 1.2.2 Fortschritte bei Mustererkennungsmethoden 1.3 Motivation 1.4 Struktur der Arbeit 2 Verfahren zur Gasanalyse 2.1 Messverfahren 2.1.1 Impedanzspektroskopie als Detektionsmethode 2.1.1.1 Definition der Impedanz 2.1.1.2 Bauelemente des elektrischen Modells 2.1.2 Optische Verfahren 2.1.3 Elektrochemische Verfahren 2.2 Merkmalerkennung 2.2.1 Merkmalsreduktion 2.2.1.1 Komplexe Hauptkomponentenanalyse (Engl. Complex Principal Component Analysis) 2.2.1.2 Kernel-Diskriminanzanalyse mittels Support Vektoren (engl. kernel Discriminant Analysis via Support Vector) 2.2.2 Klassifikationsverfahren 2.2.2.1 Abstands-gewichtete k-Nächste-Nachbarn-Klassifikation (engl. Distance weighted k-Nearest-Neighbor-Algorithms, DW-kNN) 2.2.2.2 Mehrlagiges Perzeptron (MLP) 2.2.2.3 Support Vektor Maschine (SVM) 3 Eigene Mustererkennungsverfahren 3.1 Parameterschätzung mittels Adaptive-Simulated-Annealing (ASA-PE) 3.1.1 Allgemeines Impedanzspektroskopiemodell eines Gassensors 3.1.2 Parameterschätzung 3.1.3 Die Optimierungsverfahren 3.2 Committee machine 4 Anwendungsbeispiel 4.1 Experiment mit einem Gassensor aus PEDOT:PSS 4.1.1 Sensoraufbau und vereinfachtes Sensormodell 4.2 Experimentelle Ergebnisse 4.2.1 Messaufbau und Versuchsdurchführung 4.2.2 Vorbereitung zur Messung 4.2.3 Durchführung der Messung 4.2.4 Fehlerbetrachtung 4.2.5 Messergebnisse des Gassensors 4.3 Ergebnisse der Merkmalreduktion 4.3.1 CPCA und SVDA 4.3.2 Parameterschätzung mittels Adaptive-Simulated-Annealing (ASA-PE) 4.4 Ergebnisse der Klassifikationen 4.4.1 Ergebnisse der Gasbestimmung mittels Trainingssatz und Testsatz 4.4.1.1 DW-kNN 4.4.1.2 MLP 4.4.1.3 OAO-SVM 4.4.1.4 OAA-SVM 4.4.1.5 Committee machine 4.4.1.6 CM ohne MLP 4.4.1.7 CM mit AAi-Filter 4.4.2 Abhängigkeit der Klassifikationsergebnisse von der Anzahl der Trainingsdaten 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick Abbildungsverzeichnis Formelverzeichnis Literaturverzeichnis
187

Konzeption migrierbarer Benutzungsschnittstellen in der industriellen Automatisierungstechnik

Baron, Lukas, Braune, Annerose 20 February 2019 (has links)
Die zunehmende Gewöhnung von Benutzern an neue Interaktionskonzepte und Endgeräte ermöglicht deren Einführung in industriellen Umgebungen. Daraus folgen Anwendungsszena-rien, in denen es, selbst während der Bearbeitung einer einzelnen Arbeitsaufgabe, zu häufigen Änderungen in der Zusammensetzung der verwendeten Geräte kommt. Dies motiviert die Entwicklung migrierbarer Benutzungsschnittstellen (MUI). In diesem Beitrag stellen wir zu-nächst die anerkannte Theorie der MUIs vor, inklusive verschiedener Klassifikationsmerkma-le und spiegeln diese an den Anforderungen der Automatisierungstechnik. Anhand dessen diskutieren wir anschließend zwei Anwendungsszenarien. Die Analyse verwandter Arbeiten zeigt auf, dass existierende Ansätze nur eingeschränkt in diesen Szenarien eingesetzt werden können. Am Ende stellen wir eine Fallstudie vor, die die Anwendbarkeit von MUIs in industriel-len Prozessvisualisierungen demonstriert.:1. Einleitung 2. Migratorische Benutzungsschnittstellen 2.1 Einführung 2.2 Klassifikationsmerkmale 3. Anforderungen industrieller Visualisierungen an ein migratorisches UI 3.1 Anforderungen an Software und Engineering 3.2 Struktur und Funktionalität 3.3 Diskussion 4. Beispielhafte Anwendungsszenarien 5. Fallstudie 5.1 Existierende Prototypen 5.2 Konzeption einer Migrationslösung 6. Zusammenfassung und Ausblick / Due to familiarization of users with modern interaction concepts and devices, they become interesting for industrial environments as well. These devices enable use cases where users change the set of applied devices, even during handling one single task. This fosters the de-sign of migratory user interfaces (MUI) which can be transferred freely between devices, in order to follow according to a user’s device changes. Hence, in this paper the generally ac-cepted theory, including a set of identified classifiers for MUIs, is being analyzed with respect to the demands of the domain of industrial process visualizations. Moreover, we discuss two use cases. Our review of the related work revealed only a limited applicability in those use cases. In order to demonstrate an MUI’s usefulness in industrial process visualizations, we finally present our own case study.:1. Einleitung 2. Migratorische Benutzungsschnittstellen 2.1 Einführung 2.2 Klassifikationsmerkmale 3. Anforderungen industrieller Visualisierungen an ein migratorisches UI 3.1 Anforderungen an Software und Engineering 3.2 Struktur und Funktionalität 3.3 Diskussion 4. Beispielhafte Anwendungsszenarien 5. Fallstudie 5.1 Existierende Prototypen 5.2 Konzeption einer Migrationslösung 6. Zusammenfassung und Ausblick
188

Aspekte zur Entwicklung von industriellen Augmented Reality Lösungen

Baron, Lukas, Freund, M., Martin, Christopher, Braune, Annerose 20 February 2019 (has links)
Anwendungen unter Einsatz von Augmented Reality (AR)-Technologien gewinnen zuneh-mend an Relevanz in diversen industriellen Anwendungen, zum Beispiel für Produktpräsenta-tionen, Ausbildung und Lehre, Engineering, etc. Bei der Entwicklung solcher Anwendungen – im Speziellen von Bedien- und Beobachtungslösungen – müssen verschiedene Normen und Richtlinien beachtet werden, um zu gewährleisten, dass Anforderungen an die Betriebssi-cherheit in der jeweiligen Anlage eingehalten werden. In diesem Beitrag sollen einige Aspekte bezüglich der Anwendbarkeit solcher Richtlinien auf AR Anwendungen untersucht werden. Darüber hinaus werden weitere Aspekte betrachtet, die bei der Einführung von AR Anwen-dungen im großen Maßstab relevant sind, wie etwa die durchgängige Nutzbarkeit von CAD-Anlagenmodellen zur automatischen Erzeugung von AR-Lösungen. Schließlich stellen wir eine Fallstudie einer AR-Anwendung für eine prozesstechnische Kleinversuchsanlage vor.:1. Einleitung 2. Entwicklungsphasen von AR-Anwendungen 3. Betrachtung der UI-Gestaltungsrichtlinien 4. Fallstudie 4.1. Implementierung 4.2. Ergebnisse 5. Evaluation eines durchgängigen Entwurfsprozesses 6. Zusammenfassung und Ausblick 7. Danksagung / Augmented Reality (AR) applications gain more and more relevance in various industrial ap-plications lately, e. g. for product presentations, education, engineering, etc. In the industrial domain, especially in process supervision applications, a number of standards and guidelines have been established to ensure that the design of user interfaces meets the safety require-ments of plants or factories. Hence, we seek an evaluation if these guidelines can be applied to AR applications. Moreover, there are other aspects to consider in case AR solutions shall be applied on a larger scale in industrial applications. Thus, it is being discussed whether CAD plant models can be used to generate AR applications automatically. Finally, in this contribu-tion, we present the first preliminary results of a case study on the application of those stand-ards to a visual AR application for in-field inspection and servicing scenarios.:1. Einleitung 2. Entwicklungsphasen von AR-Anwendungen 3. Betrachtung der UI-Gestaltungsrichtlinien 4. Fallstudie 4.1. Implementierung 4.2. Ergebnisse 5. Evaluation eines durchgängigen Entwurfsprozesses 6. Zusammenfassung und Ausblick 7. Danksagung
189

Advanced Focused Ion Beam: Preparation Optimization and Damage Mitigation

Huang, Jin 10 April 2019 (has links)
Focused Ion Beam (FIB) is an important analytical and sample modification technique in the field of electron and ion microscopy. It has been widely used in different kinds of applications including semiconductor device failure analysis, material science research, nanoscale 3D tomography, as well as microstructure prototyping and surface modification. Recent developments from the rapid growing industry and our frontier research have posted new challenges on the FIB technology itself. Higher resolution has been realized by state-of-the-art hardware infrastructures and less sample destruction has been achieved by efficient operation recipes. In this doctoral thesis, a study of advanced Focused Ion Beam sample preparation is presented, with the goal to prepare samples with low or no damage. The study is divided into two aspects according to various aspects in the FIB applications: sample damage and in-situ preparation. In the first aspect, sample damage, namely amorphization, ion implantation and FIB milling rate are investigated on crystalline silicon specimens with a gallium FIB tool. To study the ion-beam induced amorphous layer thickness under certain conditions, silicon specimens were prepared by FIB into specific geometry, so that the induced amorphous layer can be imaged and the thickness can be determined quantitatively using Transmission Electron Microscopy (TEM). Atom Probe Tomography (APT) was carried out to study the implanted ion concentration of gallium FIB prepared silicon specimens. In addition, the gallium FIB milling rate was also studied for a silicon substrate using Scanning Electron Microscopy (SEM). These experimental results provide detailed information of beam-sample interactions from the FIB sample preparation. In order to gain a systematic understanding of the processes, as well as to be able to predict the outcome of a specific FIB recipe, a physics model and an adapted algorithm (TRIDYN) based on Binary Collision Approximation (BCA) were used for the simulation of FIB processes. The predicted results based on simulations were compared with experiments. The proposed model was successfully validated by the experimental results, i.e., the TRIDYN algorithm has the capability to provide predictions for the multi- step FIB sample preparation process and the respective recipes. The other aspect involves a novel design of a hardware configuration of a SEM/FIB system add-on to perform in-situ surface modification tasks such as argon ion polishing of specimens. This Beam Induced Polishing System (BIPS) overcomes the disadvantages that some of the ex-situ methods have, and it completes some of the advanced FIB recipes for extremely thin and pristine specimens. In the thesis, the functionality of a BIPS system is explained in detail, and first experimental results are shown to demonstrate the proof of concept of the system. To summarize, this doctoral thesis presents an adapted algorithm, which is validated by experiments, to simulate the multi-step Focused Ion Beam process for recipes of low- damage sample preparation; A novel in-situ experiment system BIPS is also introduced, providing an option to complement SEM/FIB systems for advanced FIB sample preparation recipes.
190

Investigation of Multi-Level Neutral Point Clamped Voltage Source Converters using Isolated Gate Bipolar Transistor Modules

Wilson Veas, Alan Hjalmar 29 April 2019 (has links)
Among the multilevel (ML)-voltage source converters (VSCs) for medium voltage (MV) and high power (HP) applications, the most used power topology is the three level (3L)-neutral point clamped (NPC)-VSC, due to its features such as common direct current (DC)-bus capability with medium point, absence of switches in series-connection, low part count, and straightforward control. The use of MV-insulated gate bipolar transistor (IGBT) modules as power switches offers further advantages like inexpensive gate drivers and survival capability after short-circuit. However, the IGBT modules have a reduced life cycle due to thermal stress generated by load cycles. Despite the advantages of the 3L-NPC-VSC, its main drawback is the uneven power loss distribution among its power devices. To address this issue and to improve other characteristics, more advanced ML converters have been developed. The 3L-active neutral point clamped (ANPC)-VSC allows an improved power loss distribution thanks to its additional IGBTs, which increase the number of feasible zero-states, but needs a loss balancing scheme to choose the proper redundant zero-state and a more complex commutation sequence between states. The 3L-neutral point piloted (NPP)-VSC improves the power loss distribution thanks to the use of series-connected switches between the output terminal and the positive and negative DC-link terminals. Other advanced power topologies with higher amount of levels include the 5L-ANPC-VSC, which has a flying capacitor per phase to generate the additional levels; and the 5L-stacked multicell converter (SMC), which needs two flying capacitors per phase. The goal of this work is to is to evaluate the performance of the aforementioned NPC-type ML converters with common DC-link, included the ones with flying capacitors, in terms of the power loss distribution and the junction temperature of the most stressed devices, which define, along with the nominal output voltage, the maximum power the converter can deliver. A second objective of this work is to describe the commutations of a MV 3L-ANPC-VSC phase leg prototype with IGBT modules, including all the intermediate switching states to generate the desired commutations.:Figures and Tables V Glossary XIII 1. Introduction 1 2. State of the art of medium voltage source converters and power semiconductors 5 2.1. Overview of medium voltage source converters 5 2.1.1. Multilevel Voltage Source Converter topologies 6 2.1.2. Application oriented basic characteristic of IGCTs and IGBTs 10 2.1.3. Market overview of ML-VSCs 11 2.2. IGBT modules for MV applications 12 2.2.1. Structure and Function 12 2.2.2. Electrical characteristics of the IGBT modules 15 2.2.3. Power losses and junction temperatures estimation 17 2.2.4. Packaging 19 2.2.5. Reliability and Life cycle of IGBT modules 21 2.2.6. Market Overview 23 2.3. Summary of Chapter 2 23 3. Structure, function and characteristics of NPC-based VSCs 25 3.1. The 3L-NPC-VSC 25 3.1.1. Power Topology 25 3.1.2. Switching states, current paths and blocking voltage distribution 26 3.1.3. Modulation of three-level inverters 28 3.1.4. Power loss distribution 32 3.1.5. “Short” and “long” commutation paths 33 3.2. The 3L-NPP-VSC 34 3.2.1. Power Topology 34 3.2.2. Switching states, current paths and blocking voltage distribution 35 3.2.3. Power Loss distribution 36 3.3. The 3L-ANPC-VSC 37 3.3.1. Power Topology 37 3.3.2. Switching states, current paths and blocking voltage distribution 38 3.3.3. Commutations and power loss distribution 39 3.3.4. Loss balancing schemes 57 3.4. The 5L-ANPC-VSC 60 3.4.1. Power Topology 60 3.4.2. Switching states, current paths and blocking voltage distribution 61 3.4.3. Commutation sequences 62 3.4.4. Power Loss distribution 70 3.4.5. Modulation and balancing strategies of capacitor voltages 70 3.5. The 5L-SMC 74 3.5.1. Power Topology 74 3.5.2. Switching states, current paths and blocking voltage distribution 75 3.5.3. Commutations and power loss distribution 78 3.5.4. Modulation and balancing strategies of capacitor voltages 80 3.6. Summary of Chapter 3 81 4. Comparative evaluation and performance of NPC-based converters 83 4.1. Motivation and goal of the comparisons 83 4.2. Basis of the comparison 83 4.2.1. Simulation scheme 85 4.2.2. Losses and thermal models for (4.5 kV, 1.2 kA) IGBT modules 86 4.2.3. Operating points, modulation, controllers and general parameters 88 4.2.4. Life cycle estimation 94 4.3. Simulation results of the 3.3 kV 3L-VSCs 97 4.3.1. Loss distribution and temperature at equal phase current 97 4.3.2. Maximum phase current 109 4.3.3. Life cycle 111 4.4. Simulation results of the 6.6 kV 5L and 3L-VSCs 115 4.4.1. Loss distribution and temperature at equal phase current 115 4.4.2. Maximum phase current 120 4.4.3. Life cycle 128 4.5. Summary of Chapter 4 132 5. Experimental investigation of the 3L-ANPC-VSC with IGBT modules 135 5.1. Goal of the work 135 5.2. Description of the 3L-ANPC-VSC test bench 136 5.2.1. Medium voltage stage 136 5.2.2. Gate drivers and digital signal handling 138 5.2.3. Measurement equipment 139 5.3. Double-pulse test and commutation sequences 140 5.3.1. Description of the double-pulse test for the 3L-ANPC-VSC 140 5.3.2. Commutation sequences for the double-pulse test 142 5.4. Commutation measurements 142 5.4.1. Switching and transition times 144 5.4.2. Type I commutations 145 5.4.3. Type I-U commutations 150 5.4.4. Type II commutations 150 5.4.5. Type III commutations 157 5.4.6. Comparison of the commutation times 157 5.4.7. Stray inductances of the “short” and “long” commutations 163 5.5. Summary of Chapter 5 167 6. Conclusions 169 Appendices 173 A. Thermal model of IGBT modules 175 A.1. General “Y” model 175 A.2. “Foster” thermal circuit 177 A.3. “Cauer” thermal circuit 178 A.4. From “Foster” to “Cauer” 179 A.5. Temperature comparison using “Foster” and “Cauer” networks 181 B. The “Rainflow” cycle counting algorithm 183 C. Description of the wind generator example 187 C.1. Simulation models 188 C.1.1. Wind turbine 188 C.1.2. Synchronous generator, grid and choke filter 189 C.1.3. Converters 189 C.2. Controllers 190 C.2.1. MPPT scheme 190 C.2.2. Pitch angle controller 191 C.2.3. Generator side VSC 192 C.2.4. Grid side VSC 193 D. 3D-surfaces of the maximum load currents in NPC-based converters 195 Bibliography 201 Bibliography 201 / Unter den Multilevel-Spannungsumrichtern für Mittelspannungs- und Hochleistungsanwendungen ist die am häufigsten verwendete Leistungstopologie der NPC-VSC, wegen seinen Merkmalen wie die Gleichstrom-Bus fähigkeit mit mittlerem Punkt, das Fehlen von Schaltern in Reihenschaltung, eine geringe Anzahl von Bauteilen und eine einfache Steuerung. Die Verwendung von Bipolartransistor Modulen mit isolierter Gate-Elektrode als Leistungsschalter bietet weitere Vorteile wie kostengünstige Gatetreiber und Überlebensfähigkeit nach einem Kurzschluss. Die IGBT-Module haben jedoch aufgrund der durch Lastzyklen erzeugten thermischen Belastung eine verkürzte Lebensdauer. Trotz der Vorteile des 3L-NPC-VSC ist der Hauptnachteil die ungleichmäßige Verteilung der Leistungsverluste zwischen den Leistungsgeräten. Um dieses Problem zu beheben und andere Eigenschaften zu verbessern, wurden fortgeschrittenere ML-Konverter entwickelt. Das 3L-ANPC-VSC ermöglicht dank seiner zusätzlichen IGBTs eine verbesserte Verlustleistungsverteilung, wodurch die Anzahl der möglichen Null-Zustände erhöht wird, es ist jedoch ein Verlustausgleichsschema erforderlich, um den richtigen redundanten Null-Zustand, und benötigt auszuwählende komplexere Kommutierungssequenz zwischen Zuständen. Das 3L-NPP-VSC verbessert die Verlustleistungsverteilung durch die Verwendung von in Reihe geschalteten Schaltern zwischen der Ausgangsklemme und den positiven und negativen Zwischenkreisklemmen. Andere fortgeschrittene Leistungstopologien mit einer höheren Anzahl von Stufen umfassen den 5L-ANPC-VSC, der pro Phase einen fliegenden Kondensator zur Erzeugung der zusätzlichen Stufen aufweist; und den 5L-SMC, der pro Phase zwei fliegende Kondensatoren benötigt. Das Ziel dieser Arbeit ist es, die Leistung der oben genannten NPC-VSC, einschließlich der mit fliegenden Kondensatoren, hinsichtlich der Verlustleistungsverteilung und der Sperrschichttemperatur der am stärksten beanspruchten Geräte zu bewerten. Diese definieren zusammen mit der Nennausgangsspannung die maximale Leistung, die der Umrichter liefern kann. Ein zweites Ziel dieser Arbeit ist die Beschreibung der Kommutierungen eines MV 3L-ANPC-VSC- Prototyps mit IGBT-Modulen einschließlich aller Zwischenschaltzustände, um die gewünschten Kommutierungen zu erzeugen.:Figures and Tables V Glossary XIII 1. Introduction 1 2. State of the art of medium voltage source converters and power semiconductors 5 2.1. Overview of medium voltage source converters 5 2.1.1. Multilevel Voltage Source Converter topologies 6 2.1.2. Application oriented basic characteristic of IGCTs and IGBTs 10 2.1.3. Market overview of ML-VSCs 11 2.2. IGBT modules for MV applications 12 2.2.1. Structure and Function 12 2.2.2. Electrical characteristics of the IGBT modules 15 2.2.3. Power losses and junction temperatures estimation 17 2.2.4. Packaging 19 2.2.5. Reliability and Life cycle of IGBT modules 21 2.2.6. Market Overview 23 2.3. Summary of Chapter 2 23 3. Structure, function and characteristics of NPC-based VSCs 25 3.1. The 3L-NPC-VSC 25 3.1.1. Power Topology 25 3.1.2. Switching states, current paths and blocking voltage distribution 26 3.1.3. Modulation of three-level inverters 28 3.1.4. Power loss distribution 32 3.1.5. “Short” and “long” commutation paths 33 3.2. The 3L-NPP-VSC 34 3.2.1. Power Topology 34 3.2.2. Switching states, current paths and blocking voltage distribution 35 3.2.3. Power Loss distribution 36 3.3. The 3L-ANPC-VSC 37 3.3.1. Power Topology 37 3.3.2. Switching states, current paths and blocking voltage distribution 38 3.3.3. Commutations and power loss distribution 39 3.3.4. Loss balancing schemes 57 3.4. The 5L-ANPC-VSC 60 3.4.1. Power Topology 60 3.4.2. Switching states, current paths and blocking voltage distribution 61 3.4.3. Commutation sequences 62 3.4.4. Power Loss distribution 70 3.4.5. Modulation and balancing strategies of capacitor voltages 70 3.5. The 5L-SMC 74 3.5.1. Power Topology 74 3.5.2. Switching states, current paths and blocking voltage distribution 75 3.5.3. Commutations and power loss distribution 78 3.5.4. Modulation and balancing strategies of capacitor voltages 80 3.6. Summary of Chapter 3 81 4. Comparative evaluation and performance of NPC-based converters 83 4.1. Motivation and goal of the comparisons 83 4.2. Basis of the comparison 83 4.2.1. Simulation scheme 85 4.2.2. Losses and thermal models for (4.5 kV, 1.2 kA) IGBT modules 86 4.2.3. Operating points, modulation, controllers and general parameters 88 4.2.4. Life cycle estimation 94 4.3. Simulation results of the 3.3 kV 3L-VSCs 97 4.3.1. Loss distribution and temperature at equal phase current 97 4.3.2. Maximum phase current 109 4.3.3. Life cycle 111 4.4. Simulation results of the 6.6 kV 5L and 3L-VSCs 115 4.4.1. Loss distribution and temperature at equal phase current 115 4.4.2. Maximum phase current 120 4.4.3. Life cycle 128 4.5. Summary of Chapter 4 132 5. Experimental investigation of the 3L-ANPC-VSC with IGBT modules 135 5.1. Goal of the work 135 5.2. Description of the 3L-ANPC-VSC test bench 136 5.2.1. Medium voltage stage 136 5.2.2. Gate drivers and digital signal handling 138 5.2.3. Measurement equipment 139 5.3. Double-pulse test and commutation sequences 140 5.3.1. Description of the double-pulse test for the 3L-ANPC-VSC 140 5.3.2. Commutation sequences for the double-pulse test 142 5.4. Commutation measurements 142 5.4.1. Switching and transition times 144 5.4.2. Type I commutations 145 5.4.3. Type I-U commutations 150 5.4.4. Type II commutations 150 5.4.5. Type III commutations 157 5.4.6. Comparison of the commutation times 157 5.4.7. Stray inductances of the “short” and “long” commutations 163 5.5. Summary of Chapter 5 167 6. Conclusions 169 Appendices 173 A. Thermal model of IGBT modules 175 A.1. General “Y” model 175 A.2. “Foster” thermal circuit 177 A.3. “Cauer” thermal circuit 178 A.4. From “Foster” to “Cauer” 179 A.5. Temperature comparison using “Foster” and “Cauer” networks 181 B. The “Rainflow” cycle counting algorithm 183 C. Description of the wind generator example 187 C.1. Simulation models 188 C.1.1. Wind turbine 188 C.1.2. Synchronous generator, grid and choke filter 189 C.1.3. Converters 189 C.2. Controllers 190 C.2.1. MPPT scheme 190 C.2.2. Pitch angle controller 191 C.2.3. Generator side VSC 192 C.2.4. Grid side VSC 193 D. 3D-surfaces of the maximum load currents in NPC-based converters 195 Bibliography 201 Bibliography 201

Page generated in 0.0221 seconds