• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 18
  • 17
  • 16
  • 14
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Analýza chování kořene kotvy v jemnozrnných zeminách / Behavior analysis of a ground anchor fixed length in fine grained soils

Chalmovský, Juraj January 2016 (has links)
Ground anchors represent an important structural element in the area of ground engineering. Despite an extensive usage of these elements, their design is usually performed using simple empirical and semi-empirical methods. An application of these procedures brings to the design a number of simplifying assumptions. The goal of the dissertation is to refine the computational design of ground anchors, analysis and quantification of selected factors significantly affecting their load displacement behavior. Firstly, the finite element method is applied. Two novel constitutive models are used: Multilaminate Constitutive Model for Stiff Soils (Schädlich, 2012) involving post peak shear softening of overconsolidated cohesive soils and Shotcrete Model (Schädlich, 2014) involving tension softening after tensile strength is reached. First constitutive model was used in order to simulate progressive decrease of skin friction along the anchor fixed length. Second constitutive model was applied for the grout material. In the next step, experimental program including several anchor load tests was carried out. The goal of the experimental program was to confirm conclusions from numerical studies and to obtain relevant data for further back – analysis. A newly developed application, in which all the findings from numerical computations and experimental measurements are incorporated, is described afterwards. The application is based on the use of so-called load-transfer functions. The program verification was conducted through series of back analysis of investigation anchor load tests realized on four different construction sites in two different types of fine-grained soils. The verification of the application is followed by series of parametric studies in which an influence of input parameters values is analyzed. Dissertation is concluded by the summarization of the most important findings.
72

High temperature process to structure to performance material modeling

Brandon T Mackey (17896343) 05 February 2024 (has links)
<p dir="ltr">In structural metallic components, a material’s lifecycle begins with the processing route, to produce a desired structure, which dictates the in-service performance. The variability of microstructural features as a consequence of the processing route has a direct influence on the properties and performance of a material. In order to correlate the influence processing conditions have on material performance, large test matrices are required which tend to be time consuming and expensive. An alternative route to avoid such large test matrices is to incorporate physics-based process modeling and lifing paradigms to better understand the performance of structural materials. By linking microstructural information to the material’s lifecycle, the processing path can be modified without the need to repeat large-scale testing requirements. Additionally, when a materials system is accurately modeled throughout its lifecycle, the performance predictions can be leveraged to improve the design of materials and components.</p><p dir="ltr">Ni-based superalloys are a material class widely used in many critical aerospace components exposed to coupling thermal and mechanical loads due to their increased resistance to creep, corrosion, oxidation, and strength characteristics at elevated temperatures. Many Ni-based superalloys undergo high-temperature forging to produce a desired microstructure, targeting specific strength and fatigue properties in order to perform under thermo-mechanical loads. When in-service, these alloys tend to fail as a consequence of thermo-mechanical fatigue (TMF) from either inclusion- or matrix- driven failure. In order to produce safer, cheaper and more efficient critical aerospace components, the micromechanical deformation and damage mechanisms throughout a Ni-based superalloy’s lifecycle must be understood. This research utilizes process modeling as a tool to understand the damage and deformation of inclusions in a Ni-200 matrix throughout radial forging as a means to optimize the processing conditions for improved fatigue performance. In addition, microstructural sensitive performance modeling for a Ni-based superalloy is leveraged to understand the influence TMF has on damage mechanisms.</p><p dir="ltr">The radial forging processing route requires both high temperatures and large plastic deformation. During this process, non-metallic inclusions (NMIs) can debond from the metallic matrix and break apart, resulting in a linear array of smaller inclusions, known as stringers. The evolution of NMIs into stringers can result in matrix load shedding, localized plasticity, and stress concentrations near the matrix-NMI interface. Due to these factors, stringers can be detrimental to the fatigue life of the final forged component. By performing a finite element model of the forging process with cohesive zones to simulate material debonding, this research contributes to the understanding of processing induced deformation and damage sequences on the onset of stringer formation for Alumina NMIs in a Ni-200 matrix. Through a parametric study, the interactions of forging temperature, strain rate, strain per pass, and interfacial decohesion on the NMI damage evolution metrics are studied, specifically NMI particle separation, rotation, and cavity formation. The parametric study provides a linkage between the various processing conditions parameters influence on detrimental NMI morphology related to material performance.</p><p dir="ltr">The microstructural characteristics of Ni-based superalloys, as a consequence of a particular processing route, creates a variability in TMF performance. The micromechanical failure mechanisms associated with TMF are dependent on various loading parameters, such as temperature, strain range, and strain-temperature phasing. Insights on the complexities of micromechanical TMF damage are studied via a temperature-dependent, dislocation density-based crystal plasticity finite element (CPFE) model with uncertainty quantification. The capabilities of the model’s temperature dependency are examined via direct instantiation and comparison to a high-energy X-ray diffraction microscopy (HEDM) experiment under coupled thermal and mechanical loads. Unique loading states throughout the experiment are investigated with both CPFE predictions and HEDM results to study early indicators of TMF damage mechanisms at the grain scale. The mesoscale validation of the CPFE model to HEDM experimental data provides capabilities for a well-informed TMF performance paradigm under various strain-temperature phase profiles. </p><p dir="ltr">A material’s TMF performance is highly dependent on the temperature-load phase profile as a consequence of path-dependent thermo-mechanical plasticity. To investigate the relationship between microstructural damage and TMF phasing effects, the aforementioned CPFE model investigates in-phase (IP) TMF, out-of-phase (OP) TMF, and iso-thermal (ISO) loading profiles. A microstructural sensitive performance modeling framework with capabilities to isolate phasing (IP, OP, and ISO) effects is presented to locate fatigue damage in a set of statistically equivalent microstructures (SEMs). Location specific plasticity, and grain interactions are studied under the various phasing profiles providing a connection between microstructural material damage and TMF performance.</p>
73

Response of concrete pavements under moving vehicular loads and environmental effects

Darestani, Mostafa Yousefi January 2007 (has links)
The need for modern transportation systems together with the high demand for sustainable pavements under applied loads have led to a great deal of research on concrete pavements worldwide. Development of finite element techniques enabled researchers to analyse the concrete pavement under a combination of axle group loadings and environmental effects. Consequently, mechanistic approaches for designing of concrete pavements were developed based on results of finite element analyses. However, unpredictable failure modes of concrete pavements associated with expensive maintenance and rehabilitation costs have led to the use of empiricalmechanistic approach in concrete pavement design. Despite progressive knowledge of concrete pavement behaviour under applied loads, concrete pavements still suffer from deterioration due to crack initiation and propagation, indicating the need for further research. Cracks can be related to fatigue of the concrete and/or erosion of materials in sub-layers. Although longitudinal, midedge and corner cracks are the most common damage modes in concrete pavements, Austroads method for concrete pavement design was developed based on traditional mid-edge bottom-up transverse cracking introduced by Packard and Tayabji (1985). Research presented in this thesis aims to address the most common fatigue related distresses in concrete pavements. It uses comprehensive finite element models and analyses to determine the structural behaviour of concrete pavements under vehicular loads and environmental effects. Results of this research are supported by laboratory tests and an experimental field test. Results of this research indicate that the induced tensile stresses within the concrete pavement are significantly affected by vehicle speed, differential temperature gradient and loss of moisture content. Subsequently, the interaction between the above mentioned factors and concrete damage modes are discussed. Typical dynamic amplifications of different axle groups are presented. A new fatigue test setup is also developed to take into consideration effects of pavement curvature on fatigue life of the concrete. Ultimately, results of the research presented in this thesis are employed to develop a new guide for designing concrete pavements with zero maintenance of fatigue damage.

Page generated in 0.0508 seconds