• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study on the fabrication of a DMFC electrode by the decal method

Hsu, Chun-Ming 11 September 2007 (has links)
Membrane electrode assembly (MEA) is the foundation of the single cell as well as the core of the fuel cell when generating electricity. Its work efficiency is the key factor for single cell performance. This study aims to understand the variation between the conventional method and the decal method during the MEA process. By observing the microstructure morphology of electrode and the performance of single cell, as well as analyzing internal resistance and its stabilization, the advantages and disadvantages of MEA in the two methods is analyzed. The decal condition is 135¢XC, 15 kg/cm , 2.5 min at a high temperature (50¢XC 3M methanol), in air-breathing under atmosphere system. The maximum power density is approximately 22.5 mW/cm which is very close to the result of conventional method. The decal method is better than the conventional method particularly in regards to the high current density performance. It shows that there is an efficient influence of the decal method on the methanol mass transfer and it also improves its polarization and enlarges the current. If the single cell is operated in the high temperature, the fuel mass transfer can be advanced in the decal method and its performance can be raised. However, in the manufacturing process, more time has to be spent when producing the MEA. This experiment can be used as a reference on the single cell operation environment and manufacturing time for future studies.
2

Elaboration d'électrodes de piles à combustible à membrane par un procédé de transfert de couches catalytiques / Development of Electrodes for Proton Exchange Membrane Fuel Cell by a Transfer process of Catalyst Layers

Sephane, Nicolas 17 December 2013 (has links)
Ces travaux de thèse portent sur l'optimisation des méthodes de fabrication des assemblages membrane électrodes des Piles à Membrane Echangeuse de Protons (PEMFC, Proton Exchange Membrane Fuel Cell). Ils ont pour objectif d'optimiser le dépôt des couches catalytiques sur la membrane par une méthode de transfert. Le procédé a été utilisé pour fabriquer d'une part des assemblages à membrane Nafion® pour les piles à combustible à membrane fonctionnant à 80 °C (PEMFC) et d'autre part des assemblages à membrane polybenzimidazole dopée en acide phosphorique pour les PEMFC à haute température (160 °C). Au cours de cette étude, la détermination précise de la quantité de platine a été rendue possible par des mesures non destructives en fluorescence X. Nous avons développé également une méthode originale de fabrication de suspensions de blendes Nafion-PBI qui ont été incorporées dans les électrodes des assemblages à membrane PBI. L'effet de la composition, des épaisseurs et du mode de préparation des électrodes sur les performances des assemblages a été discuté. Les assemblages membrane électrodes à membrane PBI ont été caractérisés par des mesures en polarisation et en spectroscopie d'impédance (EIS). La détermination de surface active d'électrode a été réalisée par des mesures en voltammétrie cyclique in-situ (CV). La mise au point du procédé de fabrication des électrodes par transfert de couches actives sur membrane a permis d'obtenir des informations importantes sur les conditions de préparation des électrodes. Les performances des assemblages à membrane Nafion® sont supérieures à celles obtenues sur des assemblages de référence avec des électrodes supportées sur couche de diffusion (GDE). Il a été possible de réaliser pour la première fois des assemblages avec un dépôt sur des membranes polybenzimidazole déjà dopées en acide, les premiers résultats obtenus sont extrêmement encourageants. Le procédé de transfert des couches catalytiques pourrait être adapté pour réaliser des dépôts sur d'autres variétés de membranes dopées ou non dopées en acide. / This work concerns the optimization of the fabrication processes of membrane electrode assemblies for the Proton Exchange Membrane Fuel Cell (PEMFC). The objective is to carry out the deposition of catalyst layers onto the membranes by a transfer process. The optimization of the catalyst layer compositions and its morphology is crucial for this process. Assemblies with Nafion® membranes for PEMFC working at 80 °C and phosphoric acid doped polybenzimidazole membranes for HTPEMFC (160 °C) have been prepared by this method. X-ray fluorescence spectrometry, due to its non destructive nature, was applied for precise analysis of platinum loading on the electrodes. In this work, a new method was also developed for the preparation of Nafion-PBI blend suspensions that have been incorporated in the electrodes of the PBI membrane electrodes assemblies. The PBI membrane electrode assemblies have been characterized by polarization measurements and electrochemical impedance spectroscopy (EIS). The in situ PEM Fuel Cell electrochemical surface area (ECSA) has been determined by cyclic voltammétrie measurements. The performances of Nafion membrane assemblies are higher than those obtained on reference assemblies, with gas diffusion layer supported electrodes. Promising results have been obtained on the assemblies performed for the first time with acid doped PBI membranes. The transfer process of the catalyst layer can also be used on other types of membrane.
3

Tiefdruckverfahren zur Herstellung von Katalysatorschichten für (PEM) Brennstoffzellen / Gravure Printing as Manufacturing Technology for Catalyst Layers of (PEM) Fuel Cells

Siegel, Frank 06 June 2016 (has links) (PDF)
Diese Dissertation befasst sich mit der industrienahen Herstellung von Katalysatorschichten für Polymer-Elektrolyt-Membran-Brennstoffzellen mit Hilfe des Tiefdrucks als Fertigungsverfahren. Um die Anforderungen an die Katalysatorschicht hinsichtlich der Schichtdicke zu erreichen, wird ein Linienraster für den Tiefdruck entwickelt. Das patentierte und verifizierte Designkonzept des Linienrasters ermöglicht es, trotz Tinten mit geringem Feststoffgehalt hohe Trockenschichtdicken zu erzeugen. Aufgrund des verwendeten Tiefdruckrasters sind Optimierungsschritte an der Fertigungsanlage notwendig, um eine hohe Schichtqualität zu erreichen. Schließlich werden kontinuierlich und industrienah Katalysatorschichten gefertigt, die als Membran-Elektroden-Einheit in einer Polymer-Elektrolyt-Membran-Brennstoffzelle erfolgreich eingesetzt werden. / This work presents an industrial close manufacturing process of active electrodes for Polymer Electrolyte Fuel Cells utilizing an adapted gravure printing process. To meet the requirements of the electrodes regarding the layer thickness (weight) and quality a novel line screen with maximized dipping volume for gravure printing was developed and investigated. A design rule for this kind of screens was realized and verified by a successful manufacturing of electrodes with different dried layer thicknesses. Due to the rough structure and the high dipping volumes of these line screens an adaption and optimization of the machinery and the whole process was necessary to achieve high quality electrodes. Finally, it is shown that it is possible to manufacture continuiously in an industrial close roll-to-roll process platinum loaded electrodes, working successful as cathode in a Membran-Electrode-Assembly.
4

Tiefdruckverfahren zur Herstellung von Katalysatorschichten für (PEM) Brennstoffzellen

Siegel, Frank 23 November 2015 (has links)
Diese Dissertation befasst sich mit der industrienahen Herstellung von Katalysatorschichten für Polymer-Elektrolyt-Membran-Brennstoffzellen mit Hilfe des Tiefdrucks als Fertigungsverfahren. Um die Anforderungen an die Katalysatorschicht hinsichtlich der Schichtdicke zu erreichen, wird ein Linienraster für den Tiefdruck entwickelt. Das patentierte und verifizierte Designkonzept des Linienrasters ermöglicht es, trotz Tinten mit geringem Feststoffgehalt hohe Trockenschichtdicken zu erzeugen. Aufgrund des verwendeten Tiefdruckrasters sind Optimierungsschritte an der Fertigungsanlage notwendig, um eine hohe Schichtqualität zu erreichen. Schließlich werden kontinuierlich und industrienah Katalysatorschichten gefertigt, die als Membran-Elektroden-Einheit in einer Polymer-Elektrolyt-Membran-Brennstoffzelle erfolgreich eingesetzt werden. / This work presents an industrial close manufacturing process of active electrodes for Polymer Electrolyte Fuel Cells utilizing an adapted gravure printing process. To meet the requirements of the electrodes regarding the layer thickness (weight) and quality a novel line screen with maximized dipping volume for gravure printing was developed and investigated. A design rule for this kind of screens was realized and verified by a successful manufacturing of electrodes with different dried layer thicknesses. Due to the rough structure and the high dipping volumes of these line screens an adaption and optimization of the machinery and the whole process was necessary to achieve high quality electrodes. Finally, it is shown that it is possible to manufacture continuiously in an industrial close roll-to-roll process platinum loaded electrodes, working successful as cathode in a Membran-Electrode-Assembly.

Page generated in 0.0252 seconds