1 |
Optimisation of charging strategies and energy storage operation for a solar driven charging stationGong, Jindan January 2019 (has links)
The Swedish energy sector is undergoing transformational changes. Along with a rapid growth of renewables and a shift towards electromobility, the transformation is expected to bring challenges to the power system in terms of grid instability and capacity deficiency. Integrating distributed renewable electricity production into the electric vehicle (EV) charging infrastructure is a promising solution to overcome those challenges. The feasibility of implementing such a charging infrastructure system in northern Sweden is however uncertain, as the solar resources are scarce in the long winter period. This study aims to maximise the value of a solar powered EV charging station, placed in a workplace environment in Umeå. An integrated system model of the charging station is developed, comprising separate models of a solar PV system, a battery energy storage system (BESS), the workplace EV fleet and the building Växthuset, onto which the charging station will be installed. Three scenarios are developed to study the charging station’s system performance under different EV charging strategies and BESS dispatch strategies. Two additional scenarios are developed to study the potential grid services that the charging station can provide in the winter period. A techno-economic assessment is performed on each scenario’s simulation results, to measure their effect on the charging station’s value. It involves analysing the charging station’s profitability and how well the BESS is utilised by the end of a ten-year project period. The charging station’s grid impact is further assessed by its self-consumption of solar power, peak power demand and the grid energy exchange. The assessed charging station values indicate that the overall grid impact was reduced with dynamic EV charging strategies and that the BESS capacity utilisation was strongly influenced by its dispatch strategy. The charging station further implied a net capital loss under the explored scenarios, even while the dynamic charging strategies brought by a slightly increased economic value. Moreover, the studied winter scenarios showed a great potential for the charging station to provide ancillary services to the local distribution grid while maintaining an efficient BESS capacity utilisation. The winter period’s peak power demand was significantly reduced by optimising the BESS operation to shift peaks in the building’s load profile, and peaks caused by the additional EV charging demand and the EV heaters, to off-peak hours. On this basis, future research is recommended for improved simulations of the charging station operation and to study additional value-added features that the solar driven charging station can bring. / Sveriges energisystem genomgår en omfattande omställning. Förändringar i form av en ökad andel förnybar elproduktion och elektrifieringen av transportsektorn förväntas medföra stora utmaningar för elsystemets nätstabilitet och överföringskapacitet. Att integrera in distribuerad, förnybar elproduktion som en del av laddinfrastrukturen för elfordon ställer sig som en lovande lösning för att möta de väntande utmaningarna. Möjligheterna att tillämpa en sådan lösning i norra Sverige är däremot mindre självklara, då solresurserna är knappa under vintertid. Det här examensarbetet syftar till att maximera nyttan av en soldriven laddstation för elbilar, placerad på ett arbetsplatsområde i Umeå. En integrerad energisystemmodell av laddstationen har skapats, bestående av systemmodeller av solpaneler, ett batterienergilager, arbetsplatsens elbilsflotta samt byggnaden Växthuset, som laddstationen ska anslutas till. Tre scenarier har utformats för att undersöka hur laddstationens prestanda förändras beroende på olika laddstrategier för elbilarna och batterienergilagrets styrning. Ytterligare två scenarier har utvecklats för att utforska möjliga nättjänster som laddstationen kan bistå med under vintertid. Laddstationens värde har vidare bedömts utifrån systemets prestanda i de olika scenarierna. Bedömningen grundar sig på laddstationens lönsamhet och hur välutnyttjat batterienergilagret är efter en kalkylperiod på 10 år, samt på specifika påverkansfaktorer på elnätet. Faktorerna omfattar konsumtionen av egenproducerad el, toppeffektuttaget och nätöverföringarna orsakade av laddstationen. Från värderingen av laddstationen framgår det att de dynamiska laddstrategierna ledde till en, överlag, minskad påverkan på elnätet samt att styrningen av batterienergilagret hade stor inverkan på dess utnyttjandegrad. Laddstationens nettonuvärde förblev negativt i de tre scenarierna, även om de dynamiska laddstrategierna, ökade dess ekonomiska värde till en viss del. Vidare tyder simuleringen av vinterscenarierna på att det finns en stor potential för laddstationen att erbjuda tjänster för lokalnätet och samtidigt nyttiggöra sig av batterienergilagret. Växthusets toppeffektuttag reducerades märkbart genom att optimera batteristyrningen till att flytta effekttoppar orsakade av Växthusets ellastkurva eller elbilarnas laddning och uppvärmning, till de timmar där lasten var lägre. Med detta i bakgrund föreslås vidare studier som fokuserar på den integrerade energisystemmodellen för att förbättra simuleringarna, samt att undersöka möjligheterna till att erbjuda fler nättjänster, som ökar laddstationens mervärde.
|
Page generated in 0.1299 seconds