Spelling suggestions: "subject:"decidability"" "subject:"décidabilité""
1 |
Théorie algébrique des langages formels temps réelDima, Catalin 11 December 2001 (has links) (PDF)
Un automate temporisé est un automate augmenté avec plusieurs horloges qui mesurent le passage de temps et peuvent conditionner la modification de l'état du système. Les automates temporisés ont été introduits en tant que modèle formel pour les systèmes temps-réel, en espérant que leur rôle dans la vérification de tels systèmes sera similaire au rôle des automates finis dans la recherche systématique des erreurs de conception de systèmes non-temporisés. Dans notre thèse nous étudions plusieurs questions théoriques liés aux automates temporisés et aux langages temporisés. Dans une première partie nous étudions une sous-classe simple d'automates temporisés à une seule horloge qui est remise à zéro pendant chaque transition. Nous montrons que cette sous-classe supporte des résultats similaires à la théorie classique des automates finis: des théorèmes de Kleene, de Myhill-Nerode et de fermeture par complémentation. La deuxième et principale partie de la thèse est motivée par les expressions régulières temporisés de Asarin, Caspi et Maler. Depuis leur introduction, on sait qu'il faut employer l'intersection dans les expressions régulières pour que leur expressivité soit égale aux automates temporisés. Nous poursuivons alors une approche alternative en utilisant des parenthèses colorées pour définir les contraintes temporelles sur une séquence d'événements. Cette idée aboutit à une représentation alternative des langage des automates temporisés, basée sur une nouvelle classe de langages formels que nous appelons . Nous développons alors la théorie des expressions régulières sur les regminos et nous montrons que le problème de sémantique vide est indécidable en cas général, et décidable pour une sous-classe large de langages. L'application de ces résultats nous amène à des nouvelles structures de données et à des algorithmes pour le problème du langage vide dans les automates temporisés et les expressions régulières.
|
2 |
Automates à contraintes semilinéaires = Automata with a semilinear constraintCadilhac, Michaël 11 1900 (has links)
Cette thèse présente une étude dans divers domaines de l'informatique
théorique de modèles de calculs combinant automates finis et contraintes
arithmétiques. Nous nous intéressons aux questions de décidabilité,
d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la
logique, l'algèbre et aux applications. Cette étude est présentée au travers
de quatre articles de recherche.
Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess
des automates de Parikh et en définit des généralisations et restrictions.
L'automate de Parikh est un point de départ de cette thèse; nous montrons que
ce modèle de calcul est équivalent à l'automate contraint que nous
définissons comme un automate qui n'accepte un mot que si le nombre de fois
que chaque transition est empruntée répond à une contrainte arithmétique.
Ce modèle est naturellement étendu à l'automate de Parikh affine qui
effectue une opération affine sur un ensemble de registres lors du
franchissement d'une transition. Nous étudions aussi l'automate de
Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de
fois que chaque lettre y apparaît répond à une contrainte arithmétique.
Le deuxième article, Bounded Parikh Automata, étudie les langages
bornés des automates de Parikh. Un langage est borné s'il existe des
mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire
w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont
importants dans des domaines applicatifs et présentent usuellement de bonnes
propriétés théoriques. Nous montrons que dans le contexte des langages
bornés, le déterminisme n'influence pas l'expressivité des automates de
Parikh.
Le troisième article, Unambiguous Constrained Automata, introduit les
automates contraints non ambigus, c'est-à-dire pour lesquels il
n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous
montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de
meilleures propriétés de clôture que l'automate contraint déterministe. Le
problème de déterminer si le langage d'un automate contraint non ambigu est
régulier est montré décidable.
Le quatrième article, Algebra and Complexity Meet Contrained Automata,
présente une étude des représentations algébriques qu'admettent les automates
contraints et les automates de Parikh affines. Nous déduisons de ces
caractérisations des résultats d'expressivité et de complexité. Nous
montrons aussi que certaines hypothèses classiques en complexité
computationelle sont reliées à des résultats de séparation et de non clôture
dans les automates de Parikh affines.
La thèse est conclue par une ouverture à un possible approfondissement, au
travers d'un certain nombre de problèmes ouverts. / This thesis presents a study from the theoretical computer science
perspective of computing models combining finite automata and arithmetic
constraints. We focus on decidability questions, expressiveness, and closure
properties, while opening the study to complexity, logic, algebra, and
applications. This thesis is presented through four research articles.
The first article, Affine Parikh Automata, continues the study of Klaedtke
and Ruess on Parikh automata and defines generalizations and restrictions of
this model. The Parikh automaton is one of the starting points of this
thesis. We show that this model of computation is equivalent to the
constrained automaton that we define as an automaton which accepts a word
only if the number of times each transition is taken satisfies a given
arithmetic constraint. This model is naturally extended to affine Parikh
automata, in which an affine transformation is applied to a set of registers
on taking a transition. We also study the Parikh automaton on letters, that
is, an automaton which accepts a word only if the number of times each letter
appears in the word verifies an arithmetic constraint.
The second article, Bounded Parikh Automata, focuses on the
bounded languages of Parikh automata. A language is bounded if there
are words w_1, w_2, ..., w_k such that every word in the language can be
written as w_1...w_1w_2...w_2 ... w_k...w_k. These languages
are important in applications and usually display good theoretical
properties. We show that, over the bounded languages, determinism does not
influence the expressiveness of Parikh automata.
The third article, Unambiguous Constrained Automata, introduces the
concept of unambiguity in constrained automata. An automaton is
unambiguous if there is only one accepting path per word of its language. We
show that the unambiguous constrained automaton is an appealing model of
computation which combines a better expressiveness and better closure
properties than the deterministic constrained automaton. We show that it is
decidable whether the language of an unambiguous constrained automaton is
regular.
The fourth article, Algebra and Complexity Meet Constrained Automata,
presents a study of algebraic representations of constrained automata and
affine Parikh automata. We deduce expressiveness and complexity results from
these characterizations. We also study how classical computational
complexity hypotheses help in showing separations and nonclosure properties
in affine Parikh automata.
The thesis is concluded by a presentation of possible future avenues of
research, through several open problems.
|
3 |
Automates à contraintes semilinéaires = Automata with a semilinear constraintCadilhac, Michaël 11 1900 (has links)
Cette thèse présente une étude dans divers domaines de l'informatique
théorique de modèles de calculs combinant automates finis et contraintes
arithmétiques. Nous nous intéressons aux questions de décidabilité,
d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la
logique, l'algèbre et aux applications. Cette étude est présentée au travers
de quatre articles de recherche.
Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess
des automates de Parikh et en définit des généralisations et restrictions.
L'automate de Parikh est un point de départ de cette thèse; nous montrons que
ce modèle de calcul est équivalent à l'automate contraint que nous
définissons comme un automate qui n'accepte un mot que si le nombre de fois
que chaque transition est empruntée répond à une contrainte arithmétique.
Ce modèle est naturellement étendu à l'automate de Parikh affine qui
effectue une opération affine sur un ensemble de registres lors du
franchissement d'une transition. Nous étudions aussi l'automate de
Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de
fois que chaque lettre y apparaît répond à une contrainte arithmétique.
Le deuxième article, Bounded Parikh Automata, étudie les langages
bornés des automates de Parikh. Un langage est borné s'il existe des
mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire
w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont
importants dans des domaines applicatifs et présentent usuellement de bonnes
propriétés théoriques. Nous montrons que dans le contexte des langages
bornés, le déterminisme n'influence pas l'expressivité des automates de
Parikh.
Le troisième article, Unambiguous Constrained Automata, introduit les
automates contraints non ambigus, c'est-à-dire pour lesquels il
n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous
montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de
meilleures propriétés de clôture que l'automate contraint déterministe. Le
problème de déterminer si le langage d'un automate contraint non ambigu est
régulier est montré décidable.
Le quatrième article, Algebra and Complexity Meet Contrained Automata,
présente une étude des représentations algébriques qu'admettent les automates
contraints et les automates de Parikh affines. Nous déduisons de ces
caractérisations des résultats d'expressivité et de complexité. Nous
montrons aussi que certaines hypothèses classiques en complexité
computationelle sont reliées à des résultats de séparation et de non clôture
dans les automates de Parikh affines.
La thèse est conclue par une ouverture à un possible approfondissement, au
travers d'un certain nombre de problèmes ouverts. / This thesis presents a study from the theoretical computer science
perspective of computing models combining finite automata and arithmetic
constraints. We focus on decidability questions, expressiveness, and closure
properties, while opening the study to complexity, logic, algebra, and
applications. This thesis is presented through four research articles.
The first article, Affine Parikh Automata, continues the study of Klaedtke
and Ruess on Parikh automata and defines generalizations and restrictions of
this model. The Parikh automaton is one of the starting points of this
thesis. We show that this model of computation is equivalent to the
constrained automaton that we define as an automaton which accepts a word
only if the number of times each transition is taken satisfies a given
arithmetic constraint. This model is naturally extended to affine Parikh
automata, in which an affine transformation is applied to a set of registers
on taking a transition. We also study the Parikh automaton on letters, that
is, an automaton which accepts a word only if the number of times each letter
appears in the word verifies an arithmetic constraint.
The second article, Bounded Parikh Automata, focuses on the
bounded languages of Parikh automata. A language is bounded if there
are words w_1, w_2, ..., w_k such that every word in the language can be
written as w_1...w_1w_2...w_2 ... w_k...w_k. These languages
are important in applications and usually display good theoretical
properties. We show that, over the bounded languages, determinism does not
influence the expressiveness of Parikh automata.
The third article, Unambiguous Constrained Automata, introduces the
concept of unambiguity in constrained automata. An automaton is
unambiguous if there is only one accepting path per word of its language. We
show that the unambiguous constrained automaton is an appealing model of
computation which combines a better expressiveness and better closure
properties than the deterministic constrained automaton. We show that it is
decidable whether the language of an unambiguous constrained automaton is
regular.
The fourth article, Algebra and Complexity Meet Constrained Automata,
presents a study of algebraic representations of constrained automata and
affine Parikh automata. We deduce expressiveness and complexity results from
these characterizations. We also study how classical computational
complexity hypotheses help in showing separations and nonclosure properties
in affine Parikh automata.
The thesis is concluded by a presentation of possible future avenues of
research, through several open problems.
|
Page generated in 0.058 seconds