Spelling suggestions: "subject:"decoder anda forward"" "subject:"decoder ando forward""
1 |
On Fountain Codes for Cooperative Systems Using Various Relaying StrategiesTsai, I-Tse 29 August 2012 (has links)
In wireless communication, multipath fading distorts the phase and the amplitude of received signals and increases error rate, which degrades causes communication quality. Multiple-input-multiple-output (MIMO) techniques can be adopted to achieve diversity gain and reduce error rate. However, MIMO is hard to be implemented in mobile devices due to size limitation. With this regard, cooperative communications are proposed to allow users to cooperate each other¡¦s and then achieve diversity without equipping multiple antennas. On the other hand, if source and relays adopt fixed-rate transmission under time-varying wireless channels, it requires timely feedback about channel-information for transmitters to adjust the rate of channel encoder. To reduce overhead required for aforementioned scheme, we adopt rateless fountain codes in cooperative networks. In recent year, most related studies focus on information-theoretical aspect, but it lacks discussion of practical coding. In our work, we use fountain codes in dual-hop cooperative communication and analyse transmission rate in terms of transmitting time. Fountain code was first proposed as Luby transform codes(LTC) for erasure channels. We combine low-density parity-check code( LDPC code) and LTC in cooperative communication networks, and analyze required transmission time under different cooperative protocols.
|
2 |
Performance Analysis of Decode-and-Forward Protocols in Unidirectional and Bidirectional Cooperative Diversity NetworksLIU, PENG 14 September 2009 (has links)
Cooperative communications have the ability to induce spatial diversity, increase channel capacity, and attain broader cell coverage with single-antenna terminals. This thesis focuses on the performance study of both unidirectional and bidirectional cooperative diversity networks employing the decode-and-forward (DF) protocol.
For the unidirectional cooperative diversity network, we study the average bit-error rate (BER) performance of a DF protocol with maximum-likelihood (ML) detection. Closed-form approximate average BER expressions involving only elementary functions are presented for a cooperative diversity network with one or two relays. The proposed BER expressions are valid for both coherent and non-coherent binary signallings. With Monte-Carlo simulations, it is verified that the proposed BER expressions are extremely accurate for the whole signal-to-noise ratio (SNR) range.
For the bidirectional cooperative diversity network, we study and compare the performance of three very typical bidirectional communication protocols based on the decode-and-forward relaying: time division broadcast (TDBC), physical-layer network coding (PNC), and opportunistic source selection (OSS). Specifically, we derive an exact outage probability in a one-integral form for the TDBC protocol, and exact closed-form outage probabilities for the PNC and OSS protocols. For the TDBC protocol, we also derive extremely tight upper and lower bounds on the outage probability in closed-form. Moreover, asymptotic outage probability performance of each protocol is studied. Finally, we study the diversity-multiplexing tradeoff (DMT) performance of each protocol both in the finite and infinite SNR regimes. The performance analysis presented in this thesis can be used as a useful tool to guide practical system designs for both unidirectional and bidirectional cooperative diversity networks. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-09-12 14:36:05.05
|
3 |
Cooperative Relaying in Cellular NetworksKadloor, Sachin 12 February 2010 (has links)
We consider a system with a single base station communicating with multiple users over orthogonal channels while being assisted by multiple relays. Several recent works have
suggested that, in such a scenario, selection, i.e., a single relay helping the source, is the best relaying option in terms of the resulting complexity and overhead. However, in a multiuser setting, optimal relay assignment is a combinatorial problem. We formulate a related convex optimization problem that provides an extremely tight upper bound on performance and show that selection is, almost always, inherent in the solution. We also provide a heuristic to find a close-to-optimal relay assignment and power allocation across users supported by a single relay. Simulation results using realistic channel models demonstrate the efficacy of the proposed schemes, but also raise the question as to whether the gains from relaying are worth the additional costs.
|
4 |
Cooperative Relaying in Cellular NetworksKadloor, Sachin 12 February 2010 (has links)
We consider a system with a single base station communicating with multiple users over orthogonal channels while being assisted by multiple relays. Several recent works have
suggested that, in such a scenario, selection, i.e., a single relay helping the source, is the best relaying option in terms of the resulting complexity and overhead. However, in a multiuser setting, optimal relay assignment is a combinatorial problem. We formulate a related convex optimization problem that provides an extremely tight upper bound on performance and show that selection is, almost always, inherent in the solution. We also provide a heuristic to find a close-to-optimal relay assignment and power allocation across users supported by a single relay. Simulation results using realistic channel models demonstrate the efficacy of the proposed schemes, but also raise the question as to whether the gains from relaying are worth the additional costs.
|
5 |
Selective Cooperation for Dual-Hop Cooperative Communication NetworksTsai, Tsung-hao 25 August 2010 (has links)
In cooperative communications systems, multiple relays selection scheme and adaptive relay selection scheme are usually adopted. In both schemes, the system makes selections based on instantaneous channel status. However, such schemes have an extremely high computational complexity. In particular, when the channels experience fast fading, the systems do not have sufficient to make a correct decision.
In this thesis, statistical channel properties are utilized in deciding whether cooperative transmission should be adopted or not. In our investigations, the cooperative mechanism includes direct transmission (DT), decode-and-forward (DF) relaying and amplify-and-forward (AF) relaying. The Ergodic capacity is adopted throughout the theoretical analyses. In addition, a number of approximated thresholds are derived to assist the decision process.
Simulation experiments are conducted to verify the derived results. It is shown that the proposed transmission scheme using the cooperative thresholds is effective in deciding when the cooperative communication is necessary.
|
6 |
Joint Amplify-and-Forward and Decode-and-Forward Cooperative Relay SystemsLee, Meng-ying 15 August 2009 (has links)
none
|
7 |
Optimized Constellation Mappings for Adaptive Decode-and-Forward Relay Networks using BICM-IDKumar, Kuldeep 10 1900 (has links)
In this paper, we investigate an adaptive decode-and-forward (DF) cooperative diversity scheme based on bit interleaved coded modulation with iterative decoding (BICM-ID). Data bits are first encoded by using a convolutional code and the coded bits after an interleaver are modulated before transmission. Iterative decoding is used at the receiver. Optimized constellation mapping is designed jointly for the source and the relay using a genetic algorithm. A novel error performance analysis for the adaptive DF scheme using BICM-ID is proposed. The simulation results agree well with the analytical results at high signal-to-noise ratio (SNR). More than 5.8 dB gain in terms of SNR over the existing mappings is achieved with proposed mappings.
|
8 |
Resource allocation and performance evaluation in relay-enhanced cellular networksFarazmand, Yalda 29 January 2015 (has links)
The focus of this thesis is on end-to-end (e2e) queueing performance evaluation and resource allocation in order to improve the performance of the relay-enhanced cellular networks. It is crucial to study both the performance of the data link layer and the physical layer issues. Therefore, we first consider end-to-end queueing performance evaluation and after that to consider physical layer issues, we present power allocation schemes, relay load balancing and relay assignment. First, we presented a framework for the link-level end-to-end queueing performance evaluation. Our system model consists of a base station, a relay, and multiple users. The e2e system is modeled as a probabilistic tandem of two finite queues. Using the decomposed model, radio link-level performance measures such as e2e packet loss rate, e2e delay and throughput are obtained analytically and compared with simulation results. A framework for power allocation for downlink transmissions in decode-and-forward relay networks is investigated. We consider a system with a single base station communicating with multiple users assisted by multiple relays. The relays have limited power which must be divided among the users they support in order to maximize the data rate of the whole network. Based on knapsack problem, the optimal power allocation is proposed. To consider fairness, weighted-based scheme is presented. Moreover, to utilize the power wisely, an efficient power reallocation scheme is proposed. Simulation results demonstrate the efficacy of the proposed schemes. By applying the relay selection scheme, it may happen that some relays have more users connected to them than other relays, which results in having unbalanced load among the relays. In order to address this issue, a game theoretic approach is presented. Coalition formation game is proposed based on merge-and-split rule to form the optimal structure. The simulation results demonstrate the effect of applying game in proposed problem. Finally, the relay assignment procedure is studied. The optimal solution is found using Lagrangian Relaxation. Then, a lighter algorithm is proposed to efficiently carry out the relay assignment. Simulation results show that the proposed algorithm can achieve near optimal data rate, while it decreases the processing time significantly.
|
9 |
Relaying Protocols for Wireless NetworksNasiri Khormuji, Majid January 2008 (has links)
Motivated by current applications in multihop transmission and ad hoc networks, the classical three-node relay channel consisting of a source-destination pair and a relay has received significant attention. One of the crucial aspects of the relay channel is the design of proper relaying protocols, i.e., how the relay should take part into transmission. The thesis addresses this problem and provides a partial answer to that. In this thesis, we propose and study two novel relaying protocols. The first one is based on constellation rearrangement (CR) and is suitable for higher-order modulation schemes. With CR, the relay uses a bit-symbol mapping that is different from the one used by the source. We find the optimal bit-symbol mappings for both the source and the relay and the associated optimal detectors, and show that the improvement over conventional relaying with Gray mapping at the source and the relay can amount to a power gain of several dB. This performance improvement comes at no additional power or bandwidth expense, and at virtually no increase in complexity. The second one is a half-duplex decode-and-forward (DF) relaying scheme based on partial repetition (PR) coding at the relay. With PR, if the relay decodes the received message successfully, it re-encodes the message using the same channel code as the one used at the source, but retransmits only a fraction of the codeword. We analyze the proposed scheme and optimize the cooperation level (i.e., the fraction of the message that the relay should transmit). We compare our scheme with conventional repetition in which the relay retransmits the entire decoded message, and with parallel coding, and additionally with dynamic DF. The finite SNR analysis reveals that the proposed partial repetition can provide a gain of several dB over conventional repetition. Surprisingly, the proposed scheme is able to achieve the same performance as that of parallel coding for some relay network configurations, but at a much lower complexity. Additionally, the thesis treats the problem of resource allocation for collaborative transmit diversity using DF protocols with different type of CSI feedback at the source. One interesting observation that emerges is that the joint powerbandwidth allocation only provides marginal gain over the relaying protocols with optimal bandwidth allocation. / QC 20101119
|
10 |
Analysis of near-optimal relaying schemes for wireless tandem and multicast relay networksXue, Q. (Qiang) 12 January 2016 (has links)
Abstract
This thesis is devoted to studying two wireless relay network models, namely wireless tandem multiple-input-multiple-output (MIMO) relay networks and wireless two-hop multicast relay networks.
Regarding wireless tandem MIMO relay networks, we develop a systematic approach to analyze their fundamental diversity-multiplexing tradeoff (DMT) under the assumption that the relays implement a class of practical full-duplex techniques that enable them to opt for either full-duplex or half-duplex mode. Based on the analysis, we make contribution from the following aspects: First of all, we thoroughly compare the performance of full-duplex and half-duplex mode operations in the framework of wireless tandem relay networks. We find that both full-duplex and half-duplex modes have opportunity to outperform each other. Specifically, for many tandem relay networks, in the low multiplexing gain region, the best relay-mode configuration is to let all the relays operate in half-duplex mode since this relay-mode configuration achieves the best diversity gain in the low multiplexing gain region. However, in the high multiplexing gain region, the best diversity gain is usually achieved by switching some relays to full-duplex mode. Furthermore, we study how residual interference at relays working in full-duplex mode affects the DMT of a tandem network. We find that residual interference not only derogates the performance of full-duplex mode, but also affects the optimal power allocation of the network. Specifically, if residual interference is zero or has a sufficiently low power level, a linear power allocation scheme can achieve the optimal DMT of the network. Otherwise, the optimal DMT is achieved by a nonlinear power allocation scheme. Finally, the DMT analysis illustrates an effective principle to deal with general multi-hop wireless networks, which is to break them down into small scale subnetworks with certain key structures. Then, studying the general multi-hop wireless networks essentially becomes studying those small scale subnetworks and the relationship among them.
Regarding wireless two-hop multicast relay networks, we focus on a case study where a single source multicasts to two destinations through the assistance of two relays. We propose and analyze the performance of a partial decode-and-forward protocol for the network, which includes the full decode-and-forward protocol as a special case and achieves a better performance in general. Specifically, we prove that the achievable rate of the partial decode-and-forward protocol can either reach arbitrarily close to the cut-set upper bound of the network or reach within 1 bit/s/Hz to that, asymptotically with respect to the transmit power. We also show that the partial decode-and-forward protocol can achieve the optimal DMT of the network. Then, we discuss the perspective of implementing the partial decode-and-forward strategy to more general multicast relay networks. / Tiivistelmä
Tämä opinnäytetyö tutkii kahta langatonta välitysverkkomallia, nimittäin langatonta tandem multiple-input-multiple-output (MIMO) välitysverkkoa ja langatonta monilähetysvälitysverkkoa kahdelle hypylle.
Kehitämme systemaattisen lähestymistavan diversiteetti-multipleksointi vaihtokaupan (DMT) analysointiin langattomiin tandem MIMO välitysverkkoihin, olettaen välittäjien käyttävän käytännöllisiä full-duplex lähetystekniikoita, jotka mahdollistavat valinnan joko full-duplex tai half-duplex lähetystilan välillä. Analyysin perusteella kontribuoimme seuraavilla tavoilla: Ensinnäkin, vertailemme perusteellisesti full-duplex sekä half-duplex lähetystiloja langattomissa tandem välitysverkoissa. Huomaamme, että molemmat full-duplex ja half-duplex lähetystilat voivat suoriutua toinen toistaan paremmin. Tarkemmin sanoen, monissa tandem välitysverkoissa silloin kun multipleksoinnin hyöty on alhainen, paras välitystapa on antaa kaikkien välittäjien käyttää half-duplex lähetystilaa, koska silloin saavutetaan paras diversiteettilisäys. Toisaalta, kun multipleksointilisäys on suuri, paras diversiteettilisäys saadaan yleensä asettamalla jotkin välittäjät full-duplex lähetystilaan. Lisäksi, tutkimme kuinka full-duplex lähetystilaa käyttävien välittäjien jäljelle jäävä interferenssi vaikuttaa tandemverkon DMT:aan. Huomaamme, että jäljelle jäävä interferenssi vähentää full-duplex mallin tehokkuutta ja lisäksi vaikuttaa optimaaliseen tehonjakamiseen verkossa. Tarkemmin sanoen, jos jäljelle jäävä interferenssin tehotaso on nolla tai tarpeeksi lähellä sitä, lineaarisella tehojaolla voi saavuttaa verkon optimaalisen DMT:n. Muutoin, optimaalinen DMT saavutetaan epälineaarisella tehojaolla. Lopuksi, DMT analyysi havainnollistaa tehokkaan periaatteen yleisluontoisten monihyppyverkkojen käsittelemiseen, eli verkon jakamisen pienempiin osiin erilaiin avainrakenteisiin. Tämän jälkeen yleisluntoisten langattoimen monihyppyverkkojen tutkiminen tapahtuu tutkimalla näitä pieniä osia ja niiden välisiä vuorovaikutussuhteita.
Langattomaan kahden hypyn monilähetysvälitysverkkon osalta keskitymme tapaustutkimukseen, jossa yksi lähettäjä monilähettää kahdelle vastaanottajalle kahden välittäjän avulla. Ehdotamme tälle verkolle osittaista decode-and-forward protokollaa, joka sisältää täyden decode-and-forward protokollan erikoistapauksena ja saavuttaa yleisesti tätä protokollaa paremman tehokkuuden. Tarkemmin sanoen, todistamme että tällä protokollalla siirtonopeus lähetystehon suhteen joko lähenee asymptoottisesti verkon cut-set ylärajaa mielivaltaisen lähelle tai saavuttaa sen 1 bit/s/Hz sisään. Osoitamme myös, että osittainen decode-and-forward protokolla voi saavuttaa verkon optimaalisen DMT:n. Tämän jälkeen, käsittelemme osittaisen decode-and-forward strategian impelentointia yleisluontoisille monilähetysvälitysverkoille.
|
Page generated in 0.0961 seconds