• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1933
  • 60
  • 57
  • 38
  • 38
  • 37
  • 21
  • 16
  • 14
  • 14
  • 7
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 2823
  • 2823
  • 1147
  • 1016
  • 874
  • 644
  • 583
  • 518
  • 509
  • 485
  • 469
  • 462
  • 429
  • 424
  • 405
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Modern Computing Techniques for Solving Genomic Problems

Yu, Ning 12 August 2016 (has links)
With the advent of high-throughput genomics, biological big data brings challenges to scientists in handling, analyzing, processing and mining this massive data. In this new interdisciplinary field, diverse theories, methods, tools and knowledge are utilized to solve a wide variety of problems. As an exploration, this dissertation project is designed to combine concepts and principles in multiple areas, including signal processing, information-coding theory, artificial intelligence and cloud computing, in order to solve the following problems in computational biology: (1) comparative gene structure detection, (2) DNA sequence annotation, (3) investigation of CpG islands (CGIs) for epigenetic studies. Briefly, in problem #1, sequences are transformed into signal series or binary codes. Similar to the speech/voice recognition, similarity is calculated between two signal series and subsequently signals are stitched/matched into a temporal sequence. In the nature of binary operation, all calculations/steps can be performed in an efficient and accurate way. Improving performance in terms of accuracy and specificity is the key for a comparative method. In problem #2, DNA sequences are encoded and transformed into numeric representations for deep learning methods. Encoding schemes greatly influence the performance of deep learning algorithms. Finding the best encoding scheme for a particular application of deep learning is significant. Three applications (detection of protein-coding splicing sites, detection of lincRNA splicing sites and improvement of comparative gene structure identification) are used to show the computing power of deep neural networks. In problem #3, CpG sites are assigned certain energy and a Gaussian filter is applied to detection of CpG islands. By using the CpG box and Markov model, we investigate the properties of CGIs and redefine the CGIs using the emerging epigenetic data. In summary, these three problems and their solutions are not isolated; they are linked to modern techniques in such diverse areas as signal processing, information-coding theory, artificial intelligence and cloud computing. These novel methods are expected to improve the efficiency and accuracy of computational tools and bridge the gap between biology and scientific computing.
492

Deep Boltzmann machines as hierarchical generative models of perceptual inference in the cortex

Reichert, David Paul January 2012 (has links)
The mammalian neocortex is integral to all aspects of cognition, in particular perception across all sensory modalities. Whether computational principles can be identified that would explain why the cortex is so versatile and capable of adapting to various inputs is not clear. One well-known hypothesis is that the cortex implements a generative model, actively synthesising internal explanations of the sensory input. This ‘analysis by synthesis’ could be instantiated in the top-down connections in the hierarchy of cortical regions, and allow the cortex to evaluate its internal model and thus learn good representations of sensory input over time. Few computational models however exist that implement these principles. In this thesis, we investigate the deep Boltzmann machine (DBM) as a model of analysis by synthesis in the cortex, and demonstrate how three distinct perceptual phenomena can be interpreted in this light: visual hallucinations, bistable perception, and object-based attention. A common thread is that in all cases, the internally synthesised explanations go beyond, or deviate from, what is in the visual input. The DBM was recently introduced in machine learning, but combines several properties of interest for biological application. It constitutes a hierarchical generative model and carries both the semantics of a connectionist neural network and a probabilistic model. Thus, we can consider neuronal mechanisms but also (approximate) probabilistic inference, which has been proposed to underlie cortical processing, and contribute to the ongoing discussion concerning probabilistic or Bayesian models of cognition. Concretely, making use of the model’s capability to synthesise internal representations of sensory input, we model complex visual hallucinations resulting from loss of vision in Charles Bonnet syndrome.We demonstrate that homeostatic regulation of neuronal firing could be the underlying cause, reproduce various aspects of the syndrome, and examine a role for the neuromodulator acetylcholine. Next, we relate bistable perception to approximate, sampling-based probabilistic inference, and show how neuronal adaptation can be incorporated by providing a biological interpretation for a recently developed sampling algorithm. Finally, we explore how analysis by synthesis could be related to attentional feedback processing, employing the generative aspect of the DBM to implement a form of object-based attention. We thus present a model that uniquely combines several computational principles (sampling, neural processing, unsupervised learning) and is general enough to uniquely address a range of distinct perceptual phenomena. The connection to machine learning ensures theoretical grounding and practical evaluation of the underlying principles. Our results lend further credence to the hypothesis of a generative model in the brain, and promise fruitful interaction between neuroscience and Deep Learning approaches.
493

Exploration des réseaux de neurones à base d'autoencodeur dans le cadre de la modélisation des données textuelles

Lauly, Stanislas January 2016 (has links)
Depuis le milieu des années 2000, une nouvelle approche en apprentissage automatique, l'apprentissage de réseaux profonds (deep learning), gagne en popularité. En effet, cette approche a démontré son efficacité pour résoudre divers problèmes en améliorant les résultats obtenus par d'autres techniques qui étaient considérées alors comme étant l'état de l'art. C'est le cas pour le domaine de la reconnaissance d'objets ainsi que pour la reconnaissance de la parole. Sachant cela, l’utilisation des réseaux profonds dans le domaine du Traitement Automatique du Langage Naturel (TALN, Natural Language Processing) est donc une étape logique à suivre. Cette thèse explore différentes structures de réseaux de neurones dans le but de modéliser le texte écrit, se concentrant sur des modèles simples, puissants et rapides à entraîner.
494

End-to-End Speech Recognition Models

Chan, William 01 December 2016 (has links)
For the past few decades, the bane of Automatic Speech Recognition (ASR) systems have been phonemes and Hidden Markov Models (HMMs). HMMs assume conditional indepen-dence between observations, and the reliance on explicit phonetic representations requires expensive handcrafted pronunciation dictionaries. Learning is often via detached proxy problems, and there especially exists a disconnect between acoustic model performance and actual speech recognition performance. Connectionist Temporal Classification (CTC) character models were recently proposed attempts to solve some of these issues, namely jointly learning the pronunciation model and acoustic model. However, HMM and CTC models still suffer from conditional independence assumptions and must rely heavily on language models during decoding. In this thesis, we question the traditional paradigm of ASR and highlight the limitations of HMM and CTC models. We propose a novel approach to ASR with neural attention models and we directly optimize speech transcriptions. Our proposed method is not only an end-to- end trained system but also an end-to-end model. The end-to-end model jointly learns all the traditional components of a speech recognition system: the pronunciation model, acoustic model and language model. Our model can directly emit English/Chinese characters or even word pieces given the audio signal. There is no need for explicit phonetic representations, intermediate heuristic loss functions or conditional independence assumptions. We demonstrate our end-to-end speech recognition model on various ASR tasks. We show competitive results compared to a state-of-the-art HMM based system on the Google voice search task. We demonstrate an online end-to-end Chinese Mandarin model and show how to jointly optimize the Pinyin transcriptions during training. Finally, we also show state-of-the-art results on the Wall Street Journal ASR task compared to other end-to-end models.
495

Distributed representations for compositional semantics

Hermann, Karl Moritz January 2014 (has links)
The mathematical representation of semantics is a key issue for Natural Language Processing (NLP). A lot of research has been devoted to finding ways of representing the semantics of individual words in vector spaces. Distributional approaches—meaning distributed representations that exploit co-occurrence statistics of large corpora—have proved popular and successful across a number of tasks. However, natural language usually comes in structures beyond the word level, with meaning arising not only from the individual words but also the structure they are contained in at the phrasal or sentential level. Modelling the compositional process by which the meaning of an utterance arises from the meaning of its parts is an equally fundamental task of NLP. This dissertation explores methods for learning distributed semantic representations and models for composing these into representations for larger linguistic units. Our underlying hypothesis is that neural models are a suitable vehicle for learning semantically rich representations and that such representations in turn are suitable vehicles for solving important tasks in natural language processing. The contribution of this thesis is a thorough evaluation of our hypothesis, as part of which we introduce several new approaches to representation learning and compositional semantics, as well as multiple state-of-the-art models which apply distributed semantic representations to various tasks in NLP. Part I focuses on distributed representations and their application. In particular, in Chapter 3 we explore the semantic usefulness of distributed representations by evaluating their use in the task of semantic frame identification. Part II describes the transition from semantic representations for words to compositional semantics. Chapter 4 covers the relevant literature in this field. Following this, Chapter 5 investigates the role of syntax in semantic composition. For this, we discuss a series of neural network-based models and learning mechanisms, and demonstrate how syntactic information can be incorporated into semantic composition. This study allows us to establish the effectiveness of syntactic information as a guiding parameter for semantic composition, and answer questions about the link between syntax and semantics. Following these discoveries regarding the role of syntax, Chapter 6 investigates whether it is possible to further reduce the impact of monolingual surface forms and syntax when attempting to capture semantics. Asking how machines can best approximate human signals of semantics, we propose multilingual information as one method for grounding semantics, and develop an extension to the distributional hypothesis for multilingual representations. Finally, Part III summarizes our findings and discusses future work.
496

Application specific performance measure optimization using deep learning

Rahman, Md Atiqur January 2016 (has links)
In this thesis, we address the action retrieval and the object category segmentation problems by directly optimizing application specific performance measures using deep learning. Most deep learning methods are designed to optimize simple loss functions (e.g., cross-entropy or hamming loss). These loss functions are suitable for applications where the performance of the application is measured by overall accuracy. But for many applications, the overall accuracy is not an appropriate performance measure. For example, applications like action retrieval often use the area under the Receiver Operating Characteristic curve (ROC curve) to measure the performance of a retrieval algorithm. Likewise, in object category segmentation from images, the intersection-over-union (IoU) is the standard performance measure. In this thesis, we propose approaches to directly optimize these complex performance measures in deep learning framework. / October 2016
497

Depth-adaptive methodologies for 3D image caregorization

Kounalakis, Tsampikos January 2015 (has links)
Image classification is an active topic of computer vision research. This topic deals with the learning of patterns in order to allow efficient classification of visual information. However, most research efforts have focused on 2D image classification. In recent years, advances of 3D imaging enabled the development of applications and provided new research directions. In this thesis, we present methodologies and techniques for image classification using 3D image data. We conducted our research focusing on the attributes and limitations of depth information regarding possible uses. This research led us to the development of depth feature extraction methodologies that contribute to the representation of images thus enhancing the recognition efficiency. We proposed a new classification algorithm that adapts to the need of image representations by implementing a scale-based decision that exploits discriminant parts of representations. Learning from the design of image representation methods, we introduced our own which describes each image by its depicting content providing more discriminative image representation. We also propose a dictionary learning method that exploits the relation of training features by assessing the similarity of features originating from similar context regions. Finally, we present our research on deep learning algorithms combined with data and techniques used in 3D imaging. Our novel methods provide state-of-the-art results, thus contributing to the research of 3D image classification.
498

Multiple time-series forecasting on mobile network data using an RNN-RBM model

Bäärnhielm, Arvid January 2017 (has links)
The purpose of this project is to evaluate the performance of a forecasting model based on a multivariate dataset consisting of time series of traffic characteristic performance data from a mobile network. The forecasting is made using machine learning with a deep neural network. The first part of the project involves the adaption of the model design to fit the dataset and is followed by a number of simulations where the aim is to tune the parameters of the model to give the best performance. The simulations show that with well tuned parameters, the neural network performes better than the baseline model, even when using only a univariate dataset. If a multivariate dataset is used, the neural network outperforms the baseline model even when the dataset is small.
499

Head and Shoulder Detection using CNN and RGBD Data

El Ahmar, Wassim 18 July 2019 (has links)
Alex Krizhevsky and his colleagues changed the world of machine vision and image processing in 2012 when their deep learning model, named Alexnet, won the Im- ageNet Large Scale Visual Recognition Challenge with more than 10.8% lower error rate than their closest competitor. Ever since, deep learning approaches have been an area of extensive research for the tasks of object detection, classification, pose esti- mation, etc...This thesis presents a comprehensive analysis of different deep learning models and architectures that have delivered state of the art performances in various machine vision tasks. These models are compared to each other and their strengths and weaknesses are highlighted. We introduce a new approach for human head and shoulder detection from RGB- D data based on a combination of image processing and deep learning approaches. Candidate head-top locations(CHL) are generated from a fast and accurate image processing algorithm that operates on depth data. We propose enhancements to the CHL algorithm making it three times faster. Different deep learning models are then evaluated for the tasks of classification and detection on the candidate head-top loca- tions to regress the head bounding boxes and detect shoulder keypoints. We propose 3 different small models based on convolutional neural networks for this problem. Experimental results for different architectures of our model are highlighted. We also compare the performance of our model to mobilenet. Finally, we show the differences between using 3 types of inputs CNN models: RGB images, a 3-channel representation generated from depth data (Depth map, Multi-order depth template, and Height difference map or DMH), and a 4 channel input composed of RGB+D data.
500

Pedestrian Detection on Dewarped Fisheye Images using Deep Neural Networks

JEEREDDY, UTTEJH REDDY January 2019 (has links)
In the field of autonomous vehicles, Advanced Driver Assistance Systems (ADAS)play a key role. Their applications vary from aiding with critical safety systems to assisting with trivial parking scenarios. To optimize the use of resources, trivial ADAS applications are often limited to make use of low-cost sensors. As a result, sensors such as Cameras and UltraSonics are preferred over LiDAR (Light Detection and Ranging) and RADAR (RAdio Detection And Ranging) in assisting the driver with parking. In a parking scenario, to ensure the safety of people in and around the car, the sensors need to detect objects around the car in real-time. With the advancements in Deep Learning, Deep Neural Networks (DNN) are becoming increasingly effective in detecting objects with real-time performance. Therefore, the thesis aims to investigate the viability of Deep Neural Networks using Fisheye cameras to detect pedestrians around the car. To achieve the objective, an experiment was conducted on a test vehicle equipped with multiple Fisheye cameras. Three Deep Neural Networks namely, YOLOv3 (You Only Look Once), its faster variant Tiny-YOLOv3 ND ResNet-50 were chosen to detect pedestrians. The Networks were trained on Fisheye image dataset with the help of transfer learning. After training, the models were also compared to pre-trained models that were trained to detect pedestrians on normal images. Our experiments have shown that the YOLOv3 variants have performed well but with a difficulty of localizing the pedestrians. The ResNet model has failed to generate acceptable detections and thus performed poorly. The three models produced detections with a real-time performance for a single camera but when scaled to multiple cameras, the detection speed was not on par. The YOLOv3 variants could detect pedestrians successfully on dewarped fish-eye images but the pipeline still needs a better dewarping algorithm to lessen the distortion effects. Further, the models need to be optimized in order to generate detections with real-time performance on multiple cameras and also to fit the model on an embedded system.

Page generated in 0.1085 seconds