• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2913
  • 276
  • 199
  • 187
  • 160
  • 82
  • 48
  • 29
  • 25
  • 21
  • 19
  • 15
  • 14
  • 12
  • 12
  • Tagged with
  • 4944
  • 2921
  • 1294
  • 1093
  • 1081
  • 808
  • 743
  • 736
  • 551
  • 545
  • 541
  • 501
  • 472
  • 463
  • 456
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Training Multi-Agent Collaboration using Deep Reinforcement Learning in Game Environment / Träning av sambarbete mellan flera agenter i spelmiljö med hjälp av djup förstärkningsinlärning

Deng, Jie January 2018 (has links)
Deep Reinforcement Learning (DRL) is a new research area, which integrates deep neural networks into reinforcement learning algorithms. It is revolutionizing the field of AI with high performance in the traditional challenges, such as natural language processing, computer vision etc. The current deep reinforcement learning algorithms enable an end to end learning that utilizes deep neural networks to produce effective actions in complex environments from high dimensional sensory observations, such as raw images. The applications of deep reinforcement learning algorithms are remarkable. For example, the performance of trained agent playing Atari video games is comparable, or even superior to a human player. Current studies mostly focus on training single agent and its interaction with dynamic environments. However, in order to cope with complex real-world scenarios, it is necessary to look into multiple interacting agents and their collaborations on certain tasks. This thesis studies the state-of-the-art deep reinforcement learning algorithms and techniques. Through the experiments conducted in several 2D and 3D game scenarios, we investigate how DRL models can be adapted to train multiple agents cooperating with one another, by communications and physical navigations, and achieving their individual goals on complex tasks. / Djup förstärkningsinlärning (DRL) är en ny forskningsdomän som integrerar djupa neurala nätverk i inlärningsalgoritmer. Det har revolutionerat AI-fältet och skapat höga förväntningar på att lösa de traditionella problemen inom AI-forskningen. I detta examensarbete genomförs en grundlig studie av state-of-the-art inom DRL-algoritmer och DRL-tekniker. Genom experiment med flera 2D- och 3D-spelscenarion så undersöks hur agenter kan samarbeta med varandra och nå sina mål genom kommunikation och fysisk navigering.
322

Analysis and Comparison of Distributed Training Techniques for Deep Neural Networks in a Dynamic Environment / Analys och jämförelse av distribuerade tränings tekniker för djupa neurala nätverk i en dynamisk miljö

Gebremeskel, Ermias January 2018 (has links)
Deep learning models' prediction accuracy tends to improve with the size of the model. The implications being that the amount of computational power needed to train models is continuously increasing. Distributed deep learning training tries to address this issue by spreading the computational load onto several devices. In theory, distributing computation onto N devices should give a performance improvement of xN. Yet, in reality the performance improvement is rarely xN, due to communication and other overheads. This thesis will study the communication overhead incurred when distributing deep learning training. Hopsworks is a platform designed for data science. The purpose of this work is to explore a feasible way of deploying distributed deep learning training on a shared cluster and analyzing the performance of different distributed deep learning algorithms to be used on this platform. The findings of this study show that bandwidth-optimal communication algorithms like ring all-reduce scales better than many-to-one communication algorithms like parameter server, but were less fault tolerant. Furthermore, system usage statistics collected revealed a network bottleneck when training is distributed on multiple machines. This work also shows that it is possible to run MPI on a hadoop cluster by building a prototype that orchestrates resource allocation, deployment, and monitoring of MPI based training jobs. Even though the experiments did not cover different cluster configurations, the results are still relevant in showing what considerations need to be made when distributing deep learning training. / Träffsäkerheten hos djupinlärningsmodeller tenderar att förbättras i relation med storleken på modellen. Implikationen blir att mängden beräkningskraft som krävs för att träna modeller ökar kontinuerligt.Distribuerad djupinlärning försöker lösa detta problem genom att distribuera beräkningsbelastning på flera enheter. Att distribuera beräkningarna på N enheter skulle i teorin innebär en linjär skalbarhet (xN). I verkligenheten stämmer sällan detta på grund av overhead från nätverkskommunikation eller I/O. Hopsworks är en dataanalys och maskininlärningsplattform. Syftetmed detta arbeta är att utforska ett möjligt sätt att utföra distribueraddjupinlärningträning på ett delat datorkluster, samt analysera prestandan hos olika algoritmer för distribuerad djupinlärning att använda i plattformen. Resultaten i denna studie visar att nätverksoptimala algoritmer såsom ring all-reduce skalar bättre för distribuerad djupinlärning änmånga-till-en kommunikationsalgoritmer såsom parameter server, men är inte lika feltoleranta. Insamlad data från experimenten visade på en flaskhals i nätverket vid träning på flera maskiner. Detta arbete visar även att det är möjligt att exekvera MPI program på ett hadoopkluster genom att bygga en prototyp som orkestrerar resursallokering, distribution och övervakning av exekvering. Trots att experimenten inte täcker olika klusterkonfigurationer så visar resultaten på vilka faktorer som bör tas hänsyn till vid distribuerad träning av djupinlärningsmodeller.
323

Deep Reinforcement Learning of IoT System Dynamics  for Optimal Orchestration and Boosted Efficiency

Haowei Shi (16636062) 30 August 2023 (has links)
<p>This thesis targets the orchestration challenge of the Wearable Internet of Things (IoT) systems, for optimal configurations of the system in terms of energy efficiency, computing, and  data transmission activities. We have firstly investigated the reinforcement learning on the  simulated IoT environments to demonstrate its effectiveness, and afterwards studied the algorithm  on the real-world wearable motion data to show the practical promise. More specifically, firstly,  challenge arises in the complex massive-device orchestration, meaning that it is essential to  configure and manage the massive devices and the gateway/server. The complexity on the massive  wearable IoT devices, lies in the diverse energy budget, computing efficiency, etc. On the phone  or server side, it lies in how global diversity can be analyzed and how the system configuration  can be optimized. We therefore propose a new reinforcement learning architecture, called boosted  deep deterministic policy gradient, with enhanced actor-critic co-learning and multi-view state?transformation. The proposed actor-critic co-learning allows for enhanced dynamics abstraction  through the shared neural network component. Evaluated on a simulated massive-device task, the proposed deep reinforcement learning framework has achieved much more efficient system  configurations with enhanced computing capabilities and improved energy efficiency. Secondly, we have leveraged the real-world motion data to demonstrate the potential of leveraging  reinforcement learning to optimally configure the motion sensors. We used paradigms in  sequential data estimation to obtain estimated data for some sensors, allowing energy savings since  these sensors no longer need to be activated to collect data for estimation intervals. We then  introduced the Deep Deterministic Policy Gradient algorithm to learn to control the estimation  timing. This study will provide a real-world demonstration of maximizing energy efficiency wearable IoT applications while maintaining data accuracy. Overall, this thesis will greatly  advance the wearable IoT system orchestration for optimal system configurations.   </p>
324

[pt] DETECÇÃO VISUAL DE FILEIRA DE PLANTAÇÃO COM TAREFA AUXILIAR DE SEGMENTAÇÃO PARA NAVEGAÇÃO DE ROBÔS MÓVEIS / [en] VISUAL CROP ROW DETECTION WITH AUXILIARY SEGMENTATION TASK FOR MOBILE ROBOT NAVIGATION

IGOR FERREIRA DA COSTA 07 November 2023 (has links)
[pt] Com a evolução da agricultura inteligente, robôs autônomos agrícolas têm sido pesquisados de forma extensiva nos últimos anos, ao passo que podem resultar em uma grande melhoria na eficiência do campo. No entanto, navegar em um campo de cultivo aberto ainda é um grande desafio. O RTKGNSS é uma excelente ferramenta para rastrear a posição do robô, mas precisa de mapeamento e planejamento precisos, além de ser caro e dependente de qualidade do sinal. Como tal, sistemas on-board que podem detectar o campo diretamente para guiar o robô são uma boa alternativa. Esses sistemas detectam as linhas com técnicas de processamento de imagem e estimam a posição aplicando algoritmos à máscara obtida, como a transformada de Hough ou regressão linear. Neste trabalho, uma abordagem direta é apresentada treinando um modelo de rede neural para obter a posição das linhas de corte diretamente de uma imagem RGB. Enquanto a câmera nesses sistemas está, geralmente, voltada para o campo, uma câmera próxima ao solo é proposta para aproveitar túneis ou paredes de plantas formadas entre as fileiras. Um ambiente de simulação para avaliar o desempenho do modelo e o posicionamento da câmera foi desenvolvido e disponibilizado no Github. Também são propostos quatro conjuntos de dados para treinar os modelos, sendo dois para as simulações e dois para os testes do mundo real. Os resultados da simulação são mostrados em diferentes resoluções e estágios de crescimento da planta, indicando as capacidades e limitações do sistema e algumas das melhores configurações são verificadas em dois tipos de ambientes agrícolas. / [en] Autonomous robots for agricultural tasks have been researched to great extent in the past years as they could result in a great improvement of field efficiency. Navigating an open crop field still is a great challenge. RTKGNSS is a excellent tool to track the robot’s position, but it needs precise mapping and planning while also being expensive and signal dependent. As such, onboard systems that can sense the field directly to guide the robot are a good alternative. Those systems detect the rows with adequate image processing techniques and estimate the position by applying algorithms to the obtained mask, such as the Hough transform or linear regression. In this work, a direct approach is presented by training a neural network model to obtain the position of crop lines directly from an RGB image. While, usually, the camera in these kinds of systems is looking down to the field, a camera near the ground is proposed to take advantage of tunnels or walls of plants formed between rows. A simulation environment for evaluating both the model’s performance and camera placement was developed and made available on Github, also four datasets to train the models are proposed, being two for the simulations and two for the real world tests. The results from the simulation are shown across different resolutions and stages of plant growth, indicating the system’s capabilities and limitations. Some of the best configurations are then verified in two types of agricultural environments.
325

Effectiveness factor of self-compacting concrete in compression for limit analysis of continuous deep beams

Khatab, Mahmoud A.T., Ashour, Ashraf 20 March 2018 (has links)
Yes / The current design codes, such as ACI 318-14, EC2 and CSA23.3-04, in addition to previous research investigations suggested different expressions for concrete effectiveness factor for use in limit state design of concrete structures. All these equations are based on different design parameters and proposed for normal concrete deep beams. This research evaluates the use of different effectiveness factor equations in the upper and lower bond analyses of continuously-supported self-compacting concrete (SCC) deep beams. Moreover, a new effectiveness factor expression is suggested to be used for upper and lower bound solutions with the aim of improving predictions of the load capacity of continuously-supported SCC deep beams. For the range of deep beams considered, the strut-and-tie method with the proposed effectiveness factor formula achieved accurate predictions, with a mean of 1.01, a standard deviation of 6.7% and a coefficient of variation of 6.8%. For the upper-bound analysis, the predictions of the proposed effectiveness factor equation were more accurate than those of the formulas suggested by previous investigations. Overall, although the proposed effectiveness factor achieved very accurate predictions, further validation for the proposed formula is needed since the only data available on continuous SCC deep beams are those collected form the current study.
326

Efficient Decentralized Learning Methods for Deep Neural Networks

Sai Aparna Aketi (18258529) 26 March 2024 (has links)
<p dir="ltr">Decentralized learning is the key to training deep neural networks (DNNs) over large distributed datasets generated at different devices and locations, without the need for a central server. They enable next-generation applications that require DNNs to interact and learn from their environment continuously. The practical implementation of decentralized algorithms brings about its unique set of challenges. In particular, these algorithms should be (a) compatible with time-varying graph structures, (b) compute and communication efficient, and (c) resilient to heterogeneous data distributions. The objective of this thesis is to enable efficient decentralized learning in deep neural networks addressing the abovementioned challenges. Towards this, firstly a communication-efficient decentralized algorithm (Sparse-Push) that supports directed and time-varying graphs with error-compensated communication compression is proposed. Second, a low-precision decentralized training that aims to reduce memory requirements and computational complexity is proposed. Here, we design ”Range-EvoNorm” as the normalization activation layer which is better suited for low-precision decentralized training. Finally, addressing the problem of data heterogeneity, three impactful advancements namely Neighborhood Gradient Mean (NGM), Global Update Tracking (GUT), and Cross-feature Contrastive Loss (CCL) are proposed. NGM utilizes extra communication rounds to obtain cross-agent gradient information whereas GUT tracks global update information with no communication overhead, improving the performance on heterogeneous data. CCL explores an orthogonal direction of using a data-free knowledge distillation approach to handle heterogeneous data in decentralized setups. All the algorithms are evaluated on computer vision tasks using standard image-classification datasets. We conclude this dissertation by presenting a summary of the proposed decentralized methods and their trade-offs for heterogeneous data distributions. Overall, the methods proposed in this thesis address the critical limitations of training deep neural networks in a decentralized setup and advance the state-of-the-art in this domain.</p>
327

<strong>A LARGE-SCALE UAV AUDIO DATASET AND AUDIO-BASED UAV CLASSIFICATION USING CNN</strong>

Yaqin Wang (8797037) 17 July 2023 (has links)
<p>The growing popularity and increased accessibility of unmanned aerial vehicles (UAVs) have raised concerns about potential threats they may pose. In response, researchers have devoted significant efforts to developing UAV detection and classification systems, utilizing diverse methodologies such as computer vision, radar, radio frequency, and audio-based approaches. However, the availability of publicly accessible UAV audio datasets remains limited. Consequently, this research endeavor was undertaken to address this gap by undertaking the collection of a comprehensive UAV audio dataset, alongside the development of a precise and efficient audio-based UAV classification system.</p> <p>This research project is structured into three distinct phases, each serving a unique purpose in data collection and training the proposed UAV classifier. These phases encompass data collection, dataset evaluation, the implementation of a proposed convolutional neural network, training procedures, as well as an in-depth analysis and evaluation of the obtained results. To assess the effectiveness of the model, several evaluation metrics are employed, including training accuracy, loss rate, the confusion matrix, and ROC curves.</p> <p>The findings from this study conclusively demonstrate that the proposed CNN classi- fier exhibits nearly flawless performance in accurately classifying UAVs across 22 distinct categories.</p>
328

Photoconductivity Spectroscopy of Deep Level Defects of ZnO Thin Films Grown by Thermal Evaporation

Steward, Ian 03 September 2010 (has links)
No description available.
329

Application of Convolutional Deep Belief Networks to Domain Adaptation

Liu, Ye 09 September 2014 (has links)
No description available.
330

HIGHLY ACCURATE MACROMOLECULAR STRUCTURE COMPLEX DETECTION, DETERMINATION AND EVALUATION BY DEEP LEARNING

Xiao Wang (17405185) 17 November 2023 (has links)
<p dir="ltr">In life sciences, the determination of macromolecular structures and their functions, particularly proteins and protein complexes, is of paramount importance, as these molecules play critical roles within cells. The specific physical interactions of macromolecules govern molecular and cellular functions, making the 3D structure elucidation of these entities essential for comprehending the mechanisms underlying life processes, diseases, and drug discovery. Cryo-electron microscopy (cryo-EM) has emerged as a promising experimental technique for obtaining 3D macromolecular structures. In the course of my research, I proposed CryoREAD, an innovative AI-based method for <i>de nov</i>o DNA/RNA structure modeling. This novel approach represents the first fully automated solution for DNA/RNA structure modeling from cryo-EM maps at near-atomic resolution. However, as the resolution decreases, structure modeling becomes significantly more challenging. To address this challenge, I introduced Emap2sec+, a 3D deep convolutional neural network designed to identify protein secondary structures, RNA, and DNA information from cryo-EM maps at intermediate resolutions ranging from 5-10 Å. Additionally, I presented Alpha-EM-Multimer, a groundbreaking method for automatically building full protein complexes from cryo-EM maps at intermediate resolution. Alpha-EM-Multimer employs a diffusion model to trace the protein backbone and subsequently fits the AlphaFold predicted single-chain structure to construct the complete protein complex. Notably, this method stands as the first to enable the modeling of protein complexes with more than 10,000 residues for cryo-EM maps at intermediate resolution, achieving an average TM-Score of predicted protein complexes above 0.8, which closely approximates the native structure. Furthermore, I addressed the recognition of local structural errors in predicted and experimental protein structures by proposing DAQ, an evaluation approach for experimental protein structure quality that utilizes detection probabilities derived from cryo-EM maps via a pretrained multi-task neural network. In the pursuit of evaluating protein complexes generated through computational methods, I developed GNN-DOVE and DOVE, leveraging convolutional neural networks and graph neural networks to assess the accuracy of predicted protein complex structures. These advancements in cryo-EM-based structural modeling and evaluation methodologies hold significant promise for advancing our understanding of complex macromolecular systems and their biological implications.</p>

Page generated in 0.0518 seconds