• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2913
  • 276
  • 199
  • 187
  • 160
  • 82
  • 48
  • 29
  • 25
  • 21
  • 19
  • 15
  • 14
  • 12
  • 12
  • Tagged with
  • 4944
  • 2921
  • 1294
  • 1093
  • 1081
  • 808
  • 743
  • 736
  • 551
  • 545
  • 541
  • 501
  • 472
  • 463
  • 456
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Multiscale Modeling with Meshfree Methods

Xu, Wentao January 2023 (has links)
Multiscale modeling has become an important tool in material mechanics because material behavior can exhibit varied properties across different length scales. The use of multiscale modeling is essential for accurately capturing these characteristics and predicting material behavior. Mesh-free methods have also been gaining attention in recent years due to their innate ability to handle complex geometries and large deformations. These methods provide greater flexibility and efficiency in modeling complex material behavior, especially for problems involving discontinuities, such as fractures and cracks. Moreover, mesh-free methods can be easily extended to multiple lengths and time scales, making them particularly suitable for multiscale modeling. The thesis focuses on two specific problems of multiscale modeling with mesh-free methods. The first problem is the atomistically informed constitutive model for the study of high-pressure induced densification of silica glass. Molecular Dynamics (MD) simulations are carried out to study the atomistic level responses of fused silica under different pressure and strain-rate levels, Based on the data obtained from the MD simulations, a novel continuum-based multiplicative hyper-elasto-plasticity model that accounts for the anomalous densification behavior is developed and then parameterized using polynomial regression and deep learning techniques. To incorporate dynamic damage evolution, a plasticity-damage variable that controls the shrinkage of the yield surface is introduced and integrated into the elasto-plasticity model. The resulting coupled elasto-plasticity-damage model is reformulated to a non-ordinary state-based peridynamics (NOSB-PD) model for the computational efficiency of impact simulations. The developed peridynamics (PD) model reproduces coarse-scale quantities of interest found in MD simulations and can simulate at a component level. Finally, the proposed atomistically-informed multiplicative hyper-elasto-plasticity-damage model has been validated against limited available experimental results for the simulation of hyper-velocity impact simulation of projectiles on silica glass targets. The second problem addressed in the thesis involves the upscaling approach for multi-porosity media, analyzed using the so-called MultiSPH method, which is a sequential SPH (Smoothed Particle Hydrodynamics) solver across multiple scales. Multi-porosity media is commonly found in natural and industrial materials, and their behavior is not easily captured with traditional numerical methods. The upscaling approach presented in the thesis is demonstrated on a porous medium consisting of three scales, it involves using SPH methods to characterize the behavior of individual pores at the microscopic scale and then using a homogenization technique to upscale to the meso and macroscopic level. The accuracy of the MultiSPH approach is confirmed by comparing the results with analytical solutions for simple microstructures, as well as detailed single-scale SPH simulations and experimental data for more complex microstructures.
732

Detection and Classification of Diabetic Retinopathy using Deep Learning Models

Olatunji, Aishat 01 May 2024 (has links) (PDF)
Healthcare analytics leverages extensive patient data for data-driven decision-making, enhancing patient care and results. Diabetic Retinopathy (DR), a complication of diabetes, stems from damage to the retina’s blood vessels. It can affect both type 1 and type 2 diabetes patients. Ophthalmologists employ retinal images for accurate DR diagnosis and severity assessment. Early detection is crucial for preserving vision and minimizing risks. In this context, we utilized a Kaggle dataset containing patient retinal images, employing Python’s versatile tools. Our research focuses on DR detection using deep learning techniques. We used a publicly available dataset to apply our proposed neural network and transfer learning models, classifying images into five DR stages. Python libraries like TensorFlow facilitate data preprocessing, model development, and evaluation. Rigorous cross-validation and hyperparameter tuning optimized model accuracy, demonstrating their effectiveness in early risk identification, personalized healthcare recommendations, and improving patient outcomes.
733

A Comparative Study on Service Migration for Mobile Edge Computing Based on Deep Learning

Park, Sung woon 15 June 2023 (has links)
Over the past few years, Deep Learning (DL), a promising technology leading the next generation of intelligent environments, has attracted significant attention and has been intensively utilized in various fields in the fourth industrial revolution era. The applications of Deep Learning in the area of Mobile Edge Computing (MEC) have achieved remarkable outcomes. Among several functionalities of MEC, the service migration frameworks have been proposed to overcome the shortcomings of the traditional methodologies in supporting high-mobility users with real-time responses. The service migration in MEC is a complex optimization problem that considers several dynamic environmental factors to make an optimal decision on whether, when, and where to migrate. In line with the trend, various service migration frameworks based on a variety of optimization algorithms have been proposed to overcome the limitations of the traditional methodologies. However, it is required to devise a more sophisticated and realistic model by solving the computational complexity and improving the inefficiency of existing frameworks. Therefore, an efficient service migration mechanism that is able to capture the environmental variables comprehensively is required. In this thesis, we propose an enhanced service migration model to address user proximity issues. We first introduce innovative service migration models for single-user and multi-user to overcome the users’ proximity issue while enforcing the service execution efficiency. Secondly, We formulate the service migration process as a complicated optimization problem and utilize Deep Reinforcement Learning (DRL) to estimate the optimal policy to minimize the migration cost, transaction cost, and consumed energy jointly. Lastly, we compare the proposed models with existing migration methodologies through analytical simulations from various aspects. The numerical results demonstrate that the proposed models can estimate the optimal policy despite the computational complexity caused by the dynamic environment and high-mobility users.
734

Drone Detection and Classification using Machine Learning

Shafiq, Khurram 26 September 2023 (has links)
UAV (Unmanned Airborne Vehicle) is a source of entertainment and a pleasurable experience, attracting many young people to pursue it as a hobby. With the potential increase in the number of UAVs, the risk of using them for malicious purposes also increases. In addition, birds and UAVs have very similar maneuvers during flights. These UAVs can also carry a significant payload, which can have unintended consequences. Therefore, detecting UAVs near red-zone areas is an important problem. In addition, small UAVs can record video from large distances without being spotted by the naked eye. An appropriate network of sensors may be needed to foresee the arrival of such entities from a safe distance before they pose any danger to the surrounding areas. Despite the growing interest in UAV detection, limited research has been conducted in this area due to a lack of available data for model training. This thesis proposes a novel approach to address this challenge by leveraging experimental data collected in real-time using high-sensitivity sensors instead of relying solely on simulations. This approach allows for improved model accuracy and a better representation of the complex and dynamic environments in which UAVs operate, which are difficult to simulate accurately. The thesis further explores the application of machine learning and sensor fusion algorithms to detect UAVs and distinguish them from other objects, such as birds, in real-time. Specifically, the thesis utilizes YOLOv3 with deep sort and sensor fusion algorithms to achieve accurate UAV detection. In this study, we employed YOLOv3, a deep learning model known for its high efficiency and complexity, to facilitate real-time drone versus bird detection. To further enhance the reliability of the system, we incorporated sensor fusion, leading to a more stable and accurate real-time system, and mitigating the incidence of false detections. Our study indicates that the YOLOv3 model outperformed the state-of-the-art models in terms of both speed and robustness, achieving a high level of confidence with a score above 95%. Moreover, the YOLOv3 model demonstrated a promising capability in real-time drone versus bird detection, which suggests its potential for practical applications
735

AUTOMATIC EXTRACTION OF COMPUTER SCIENCE CONCEPT PHRASES USING A HYBRID MACHINE LEARNING PARADIGM

S. M. Abrar Jahin (14300654) 31 May 2023 (has links)
<p> With the proliferation of computer science in recent years in modern society, the number of computer science-related employment is expanding quickly. Software engineer has been chosen as the best job for 2023 based on pay, stress level, opportunity for professional growth, and balance between work and personal life. This was decided by a rankings of different news, journals, and publications. Computer science occupations are anticipated to be in high demand not just in 2023, but also for the foreseeable future. It’s not surprising that the number of computer science students at universities is growing and will continue to grow. The enormous increase in student enrolment in many subdisciplines of computers has presented some distinct issues. If computer science is to be incorporated into the K-12 curriculum, it is vital that K-12 educators are competent. But one of the biggest problems with this plan is that there aren’t enough trained computer science professors. Numerous new fields and applications, for instance, are being introduced to computer science. In addition, it is difficult for schools to recruit skilled computer science instructors for a variety of reasons including low salary issue. Utilizing the K-12 teachers who are already in the schools, have a love for teaching, and consider teaching as a vocation is therefore the most effective strategy to improve or fix this issue. So, if we want teachers to quickly grasp computer science topics, we need to give them an easy way to learn about computer science. To simplify and expedite the study of computer science, we must acquaint school-treachers with the terminology associated with computer science concepts so they can know which things they need to learn according to their profile. If we want to make it easier for schoolteachers to comprehend computer science concepts, it would be ideal if we could provide them with a tree of words and phrases from which they could determine where the phrases originated and which phrases are connected to them so that they can be effectively learned. To find a good concept word or phrase, we must first identify concepts and then establish their connections or linkages. As computer science is a fast developing field, its nomenclature is also expanding at a frenetic rate. Therefore, adding all concepts and terms to the knowledge graph would be a challenging endeavor. Creating a system that automatically adds all computer science domain terms to the knowledge graph 11 would be a straightforward solution to the issue. We have identified knowledge graph use cases for the school-teacher training program, which motivates the development of a knowl?edge graph. We have analyzed the knowledge graph’s use case and the knowledge graph’s ideal characteristics. We have designed a web-based system for adding, editing, and remov?ing words from a knowledge graph. In addition, a term or phrase can be represented with its children list, parent list, and synonym list for enhanced comprehension. We’ve developed an automated system for extracting words and phrases that can extract computer science idea phrases from any supplied text, therefore enriching the knowledge graph. Therefore, we have designed the knowledge graph for use in teacher education so that school-teachers can educate K-12 students computer science topicses effectively. </p>
736

Song Popularity Prediction with Deep Learning : Investigating predictive power of low level audio features

Holst, Gustaf, Niia, Jan January 2023 (has links)
Today streaming services are the most popular way to consume music, and with this the field of Music Information Retrieval (MIR) has exploded. Tangy market is a music investment platform and they want to use MIR techniques to estimate the value of not yet released songs. In this thesis we collaborate with them investigating how a song’s financial success can be predicted using machine learning models. Previous research has shown that well-known algorithms used for tasks such as image recognition and machine translation, also can be used for audio analysis and prediction. We show that a lot of previous work has been done regarding different aspects of audio analysis and prediction, but that most of that work has been related to genre classification and hit song prediction. The popularity prediction of audio is still quite new and this is where we will contribute by researching if low-level audio features can be used to predict streams. We are using an existing dataset with more than 100 000 songs containing low-level features, which we extend with streaming information. We are using the features in two shapes, summarized and full, and the dataset only contains the summarized digital representation of features. We use Librosa to extend the dataset to also have the digital representation of the full version for the audio features.  A previous study by Martín-Gutiérrez et al. [1] successfully used a combination of low-level and high level audio features as well as non musical features such as number of social media followers. The aim of this thesis is to explore five of the low-level features used in a previous study in [1] in order to assess the predictive power that these features have on their own. The five features we explore is; Chromagram, Mel Spectrogram, Tonnetz, Spectral Contrast, and MFCC. These features are selected for our research specifically because they were used in [1], and we want to investigate to what extent these low-level features contribute to the final predictions made by their model. Our conclusion is that neither of these features could be used for prediction with any accuracy, which indicates that other high-level and external features are of more importance. However, Chromagram and Mel Spectrogram in their full feature states show some potential but they will need to be researched more.
737

Accuracy Considerations in Deep Learning Using Memristive Crossbar Arrays

Paudel, Bijay Raj 01 May 2023 (has links) (PDF)
Deep neural networks (DNNs) are receiving immense attention because of their ability to solve complex problems. However, running a DNN requires a very large number of computations. Hence, dedicated hardware optimized for running deep learning algorithms known as neuromorphic architectures is often utilized. This dissertation focuses on evaluating andenhancing the accuracy of these neuromorphic architectures considering the designs of components, process variations, and adversarial attacks. The first contribution of the dissertation (Chapter 2) proposes design enhancements in analog Memristive Crossbar Array(MCA)-based neuromorphic architectures to improve classification accuracy. It introduces an analog Winner-Take-All (WTA) architecture and an on-chip training architecture. WTA ensures that the classification of the analog MCA is correct at the final selection level and the highest probability is selected. In particular, this dissertation presents a design of a highly scalable and precise current-mode WTA circuit with digital address generation. The design is based on current mirrors and comparators that use the cross-coupled latch structure. A post-silicon calibration circuit is also presented to handle process variations. On-chip training ensures that there is consistency in classification accuracy among different all analog MCA-based neuromorphic chips. Finally, an enhancement to the analog on-chip training architecture by implementing the Convolutional Neural Network (CNN) on MCA and software considerations to accelerate the training is presented.The second focus of the dissertation (Chapter 3) is on producing correct classification in the presence of malicious inputs known as adversarial attacks. This dissertation shows that MCA-based neuromorphic architectures ensure correct classification when the input is compromised using existing adversarial attack models. Furthermore, it shows that adversarialrobustness can be further improved by compression-based preprocessing steps that can be implemented on MCAs. It also evaluates the impact of the architecture in Chapter 2 under adversarial attacks. It shows that adversarial attacks do not uniformly affect the classification accuracy of different MCA-based chips. Experimental evidence using a variety of datasets and attack models supports the impact of MCA-based neuromorphic architectures and compression-based preprocessing implemented on MCAs to mitigate adversarial attacks. It is also experimentally shown that the on-chip training improves consistency in mitigating adversarial attacks among different chips. The final contribution (Chapter 4) of this dissertation introduces an enhancement of the method in Chapter 3. It consists of input preprocessing using compression and subsequent rescale and rearrange operations that are implemented using MCAs. This approach further improves the robustness against adversarial attacks. The rescale and rearrange operations are implemented using a DNN consisting of fully connected and convolutional layers. Experimental results show improved defense compared to similar input preprocessing techniques on MCAs.
738

Learning with constraints on processing and supervision

Acar, Durmuş Alp Emre 30 August 2023 (has links)
Collecting a sufficient amount of data and centralizing them are both costly and privacy-concerning operations. These practical concerns arise due to the communication costs between data collecting devices and data being personal such as text messages of an end user. The goal is to train generalizable machine learning models with constraints on data without sharing or transferring the data. In this thesis, we will present solutions to several aspects of learning with data constraints, such as processing and supervision. We focus on federated learning, online learning, and learning generalizable representations and provide setting-specific training recipes. In the first scenario, we tackle a federated learning problem where data is decentralized through different users and should not be centralized. Traditional approaches either ignore the heterogeneity problem or increase communication costs to handle it. Our solution carefully addresses the heterogeneity issue of user data by imposing a dynamic regularizer that adapts to the heterogeneity of each user without extra transmission costs. Theoretically, we establish convergence guarantees. We extend our ideas to personalized federated learning, where the model is customized to each end user, and heterogeneous federated learning, where users support different model architectures. As a next scenario, we consider online meta-learning, where there is only one user, and the data distribution of the user changes over time. The goal is to adapt new data distributions with very few labeled data from each distribution. A naive way is to store data from different distributions to train a model from scratch with sufficient data. Our solution efficiently summarizes the information from each task data so that the memory footprint does not scale with the number of tasks. Lastly, we aim to train generalizable representations given a dataset. We consider a setting where we have access to a powerful teacher (more complex) model. Traditional methods do not distinguish points and force the model to learn all the information from the powerful model. Our proposed method focuses on the learnable input space and carefully distills attainable information from the teacher model by discarding the over-capacity information. We compare our methods with state-of-the-art methods in each setup and show significant performance improvements. Finally, we discuss potential directions for future work.
739

Detection and Localization of Root Damages in Underground Sewer Systems using Deep Neural Networks and Computer Vision Techniques

Muzi Zheng (14226701) 03 February 2023 (has links)
<p>  </p> <p>The maintenance of a healthy sewer infrastructure is a major challenge due to the root damages from nearby plants that grow through pipe cracks or loose joints, which may lead to serious pipe blockages and collapse. Traditional inspections based on video surveillance to identify and localize root damages within such complex sewer networks are inefficient, laborious, and error-prone. Therefore, this study aims to develop a robust and efficient approach to automatically detect root damages and localize their circumferential and longitudinal positions in CCTV inspection videos by applying deep neural networks and computer vision techniques. With twenty inspection videos collected from various resources, keyframes were extracted from each video according to the difference in a LUV color space with certain selections of local maxima. To recognize distance information from video subtitles, OCR models such as Tesseract and CRNN-CTC were implemented and led to a 90% of recognition accuracy. In addition, a pre-trained segmentation model was applied to detect root damages, but it also found many false positive predictions. By applying a well-tuned YoloV3 model on the detection of pipe joints leveraging the Convex Hull Overlap (<em>CHO</em>) feature, we were able to achieve a 20% improvement on the reliability and accuracy of damage identifications. Moreover, an end-to-end deep learning pipeline that involved Triangle Similarity Theorem (<em>TST</em>) was successfully designed to predict the longitudinal position of each identified root damage. The prediction error was less than 1.0 feet. </p>
740

Detection and Localization of Root Damages in Underground Sewer Systems using Deep Neural Networks and Computer Vision Techniques

Zheng, Muzi 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The maintenance of a healthy sewer infrastructure is a major challenge due to the root damages from nearby plants that grow through pipe cracks or loose joints, which may lead to serious pipe blockages and collapse. Traditional inspections based on video surveillance to identify and localize root damages within such complex sewer networks are inefficient, laborious, and error-prone. Therefore, this study aims to develop a robust and efficient approach to automatically detect root damages and localize their circumferential and longitudinal positions in CCTV inspection videos by applying deep neural networks and computer vision techniques. With twenty inspection videos collected from various resources, keyframes were extracted from each video according to the difference in a LUV color space with certain selections of local maxima. To recognize distance information from video subtitles, OCR models such as Tesseract and CRNN-CTC were implemented and led to a 90% of recognition accuracy. In addition, a pre-trained segmentation model was applied to detect root damages, but it also found many false positive predictions. By applying a well-tuned YoloV3 model on the detection of pipe joints leveraging the Convex Hull Overlap (CHO) feature, we were able to achieve a 20% improvement on the reliability and accuracy of damage identifications. Moreover, an end-to-end deep learning pipeline that involved Triangle Similarity Theorem (TST) was successfully designed to predict the longitudinal position of each identified root damage. The prediction error was less than 1.0 feet.

Page generated in 0.0493 seconds