• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1886
  • 58
  • 57
  • 38
  • 37
  • 37
  • 20
  • 14
  • 13
  • 7
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 2738
  • 2738
  • 1124
  • 982
  • 848
  • 621
  • 581
  • 499
  • 496
  • 471
  • 450
  • 447
  • 420
  • 416
  • 386
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Multi-Task Learning using Road Surface Condition Classification and Road Scene Semantic Segmentation

Westell, Jesper January 2019 (has links)
Understanding road surface conditions is an important component in active vehicle safety. Estimations can be achieved through image classification using increasingly popular convolutional neural networks (CNNs). In this paper, we explore the effects of multi-task learning by creating CNNs capable of simultaneously performing the two tasks road surface condition classification (RSCC) and road scene semantic segmentation (RSSS). A multi-task network, containing a shared feature extractor (VGG16, ResNet-18, ResNet-101) and two taskspecific network branches, is built and trained using the Road-Conditions and Cityscapes datasets. We reveal that utilizing task-dependent homoscedastic uncertainty in the learning process improvesmulti-task model performance on both tasks. When performing task adaptation, using a small set of additional data labeled with semantic information, we gain considerable RSCC improvements on complex models. Furthermore, we demonstrate increased model generalizability in multi-task models, with up to 12% higher F1-score compared to single-task models.
512

Human Activity Recognition : Deep learning techniques for an upper body exercise classification system

Nardi, Paolo January 2019 (has links)
Most research behind the use of Machine Learning models in the field of Human Activity Recognition focuses mainly on the classification of daily human activities and aerobic exercises. In this study, we focus on the use of 1 accelerometer and 2 gyroscope sensors to build a Deep Learning classifier to recognise 5 different strength exercises, as well as a null class. The strength exercises tested in this research are as followed: Bench press, bent row, deadlift, lateral rises and overhead press. The null class contains recordings of daily activities, such as sitting or walking around the house. The model used in this paper consists on the creation of consecutive overlapping fixed length sliding windows for each exercise, which are processed separately and act as the input for a Deep Convolutional Neural Network. In this study we compare different sliding windows lengths and overlap percentages (step sizes) to obtain the optimal window length and overlap percentage combination. Furthermore, we explore the accuracy results between 1D and 2D Convolutional Neural Networks. Cross validation is also used to check the overall accuracy of the classifiers, where the database used in this paper contains 5 exercises performed by 3 different users and a null class. Overall the models were found to perform accurately for window’s with length of 0.5 seconds or greater and provided a solid foundation to move forward in the creation of a more robust fully integrated model that can recognize a wider variety of exercises.
513

Image-based Plant Phenotyping Using Machine Learning

Javier Ribera Prat (5930189) 10 June 2019 (has links)
Phenotypic data is of crucial importance for plant breeding in estimating a plant's biomass. Traits such as leaf area and plant height are known to be correlated with biomass. Image analysis and computer vision methods can automate data analysis for high-throughput phenotyping. Many methods have been proposed for plant phenotyping in controlled environments such as greenhouses. In this thesis, we present multiple methods to estimate traits of the plant crop sorghum from images acquired from UAV and field-based sensors. We describe machine learning techniques to extract the plots of a crop field, a method for leaf counting from low-resolution images, and a statistical model that uses prior information about the field structure to estimate the center of each plant. We also develop a new loss function to train Convolutional Neural Networks (CNNs) to count and locate objects of any type and use it to estimate plant centers. Our methods are evaluated with ground truth of sorghum fields and publicly available datasets and are shown to outperform the state of the art in generic object detection and domain-specific tasks. <br><br>This thesis also examines the use of crowdsourcing information in video analytics. The large number of cameras deployed for public safety surveillance systems requires intelligent processing capable of automatically analyzing video in real time. We incorporate crowdsourcing in an online basis to improve a crowdflow estimation method. We present various approaches to characterize this uncertainty and to aggregate crowdsourcing results. Our techniques are evaluated using publicly available datasets.<br>
514

Biomedical Image Segmentation and Object Detection Using Deep Convolutional Neural Networks

Liming Wu (6622538) 11 June 2019 (has links)
<p>Quick and accurate segmentation and object detection of the biomedical image is the starting point of most disease analysis and understanding of biological processes in medical research. It will enhance drug development and advance medical treatment, especially in cancer-related diseases. However, identifying the objects in the CT or MRI images and labeling them usually takes time even for an experienced person. Currently, there is no automatic detection technique for nucleus identification, pneumonia detection, and fetus brain segmentation. Fortunately, as the successful application of artificial intelligence (AI) in image processing, many challenging tasks are easily solved with deep convolutional neural networks. In light of this, in this thesis, the deep learning based object detection and segmentation methods were implemented to perform the nucleus segmentation, lung segmentation, pneumonia detection, and fetus brain segmentation. The semantic segmentation is achieved by the customized U-Net model, and the instance localization is achieved by Faster R-CNN. The reason we choose U-Net is that such a network can be trained end-to-end, which means the architecture of this network is very simple, straightforward and fast to train. Besides, for this project, the availability of the dataset is limited, which makes U-Net a more suitable choice. We also implemented the Faster R-CNN to achieve the object localization. Finally, we evaluated the performance of the two models and further compared the pros and cons of them. The preliminary results show that deep learning based technique outperforms all existing traditional segmentation algorithms. </p>
515

Enhancement in Low-Dose Computed Tomography through Image Denoising Techniques: Wavelets and Deep Learning

Unknown Date (has links)
Reducing the amount of radiation in X-ray computed tomography has been an active area of research in the recent years. The reduction of radiation has the downside of degrading the quality of the CT scans by increasing the ratio of the noise. Therefore, some techniques must be utilized to enhance the quality of images. In this research, we approach the denoising problem using two class of algorithms and we reduce the noise in CT scans that have been acquired with 75% less dose to the patient compared to the normal dose scans. Initially, we implemented wavelet denoising to successfully reduce the noise in low-dose X-ray computed tomography (CT) images. The denoising was improved by finding the optimal threshold value instead of a non-optimal selected value. The mean structural similarity (MSSIM) index was used as the objective function for the optimization. The denoising performance of combinations of wavelet families, wavelet orders, decomposition levels, and thresholding methods were investigated. Results of this study have revealed the best combinations of wavelet orders and decomposition levels for low dose CT denoising. In addition, a new shrinkage function is proposed that provides better denoising results compared to the traditional ones without requiring a selected parameter. Alternatively, convolutional neural networks were employed using different architectures to resolve the same denoising problem. This new approach improved denoising even more in comparison to the wavelet denoising. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
516

Deep Learning for Android Application Ransomware Detection

Unknown Date (has links)
Smartphones and mobile tablets are rapidly growing, and very important nowadays. The most popular mobile operating system since 2012 has been Android. Android is an open source platform that allows developers to take full advantage of both the operating system and the applications itself. However, due to the open source community of an Android platform, some Android developers took advantage of this and created countless malicious applications such as Trojan, Malware, and Ransomware. All which are currently hidden in a large number of benign apps in official Android markets, such as Google PlayStore, and Amazon. Ransomware is a malware that once infected the victim’s device. It will encrypt files, unlock device system, and display a popup message which asks the victim to pay ransom in order to unlock their device or system which may include medical devices that connect through the internet. In this research, we propose to combine permission and API calls, then use Deep Learning techniques to detect ransomware apps from the Android market. Permissions setting and API calls are extracted from each app file by using a python library called AndroGuard. We are using Permissions and API call features to characterize each application, which can identify which application has potential to be ransomware or is benign. We implement our Android Ransomware Detection framework based on Keras, which uses MLP with back-propagation and a supervised algorithm. We used our method with experiments based on real-world applications with over 2000 benign applications and 1000 ransomware applications. The dataset came from ARGUS’s lab [1] which validated algorithm performance and selected the best architecture for the multi-layer perceptron (MLP) by trained our dataset with 6 various of MLP structures. Our experiments and validations show that the MLPs have over 3 hidden layers with medium sized of neurons achieved good results on both accuracy and AUC score of 98%. The worst score is approximately 45% to 60% and are from MLPs that have 2 hidden layers with large number of neurons. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
517

Efficient Localization of Human Actions and Moments in Videos

Escorcia, Victor 07 1900 (has links)
We are stumbling across a video tsunami flooding our communication channels. The ubiquity of digital cameras and social networks has increased the amount of visual media content generated and shared by people, in particular videos. Cisco reports that 82% of the internet traffic would be in the form of videos by 2022. The computer vision community has embraced this challenge by offering the first building blocks to translate the visual data in segmented video clips into semantic tags. However, users usually require to go beyond tagging at the video level. For example, someone may want to retrieve important moments such as the “first steps of her child” from a large collection of untrimmed videos; or retrieving all the instances of a home-run from an unsegmented video of baseball. In the face of this data deluge, it becomes crucial to develop efficient and scalable algorithms that can intelligently localize semantic visual content in untrimmed videos. In this work, I address three different challenges on the localization of actions in videos. First, I develop deep-based action proposals and detection models that take a video and generate action-agnostic and class-specific temporal segments, respectively. These models retrieve temporal locations with high accuracy in an efficient manner, faster than real-time. Second, I propose the new task to retrieve and localize temporal moments from a collection of videos given a natural language query. To tackle this challenge, I introduce an efficient and effective model that aligns the text query to individual clips of fixed length while still retrieves moments spanning multiple clips. This approach not only allows smooth interactions with users via natural languagequeries but also reduce the index size and search time for retrieving the moments. Lastly, I introduce the concept of actor-supervision that exploits the inherent compo sitionality of actions, in terms of transformations of actors, to achieve spatiotemporal localization of actions without the need of action box annotations. By designing ef ficient models to scan a single video in real-time; retrieve and localizing moments of interest from multiple videos; and an effective strategy to localize actions without resorting in action box annotations, this thesis provides insights that put us closer to the goal of general video understanding.
518

Automated Kidney Segmentation in Magnetic Resonance Imaging using U-Net

Östling, Andreas January 2019 (has links)
Manual analysis of medical images such as magnetic resonance imaging (MRI) requires a trained professional, is time-consuming and results may vary between experts. We propose an automated method for kidney segmentation using a convolutional Neural Network (CNN) model based on the U-Net architecture. Investigations are done to compare segmentations between trained experts, inexperienced operators and the Neural Network model, showing near human expert level performance from the Neural Network. Stratified sampling is performed when selecting which subject volumes to perform manual segmentations on to create training data. Experiments are run to test the effectiveness of transfer learning and data augmentation and we show that one of the most important components of a successful machine learning pipeline is larger quantities of carefully annotated data for training.
519

Identification of autism disorder through functional MRI and deep learning

Heinsfeld, Anibal S?lon 28 March 2016 (has links)
Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-30T17:22:52Z No. of bitstreams: 1 DIS_ANIBAL_SOLON_HEINSFELD_COMPLETO.pdf: 12807619 bytes, checksum: d11b60094a8bde0d839a6f7a23bbb56c (MD5) / Made available in DSpace on 2017-06-30T17:22:52Z (GMT). No. of bitstreams: 1 DIS_ANIBAL_SOLON_HEINSFELD_COMPLETO.pdf: 12807619 bytes, checksum: d11b60094a8bde0d839a6f7a23bbb56c (MD5) Previous issue date: 2016-03-28 / O Espectro Autista (EA) compreende uma s?rie de desordens no desenvolvimento neurol?gico, caracterizado por defici?ncias sociais e dificuldades de comunica??o, comportamentos repetitivos e atrasos cognitivos. Atualmente, o diagn?stico do EA ? amplamente baseado em medi??es comportamentais, que pode ser demorado, e depende da coopera??o do paciente e da experi?ncia do examinador. Para mitigar esta limita??o, investigamos padr?es neurais que ajudem no diagn?stico de desordens do EA. Nesta disserta??o, usamos t?cnicas de deep learning, a fim de extrair caracter?sticas robustas de neuroimagens de pacientes com autismo. Neuroimagens cont?m cerca de 300.000 pontos espaciais, com aproximadamente 200 medi??es cada. As t?cnicas de deep learning s?o ?teis para extrair caracter?sticas relevantes que diferenciam autistas de n?o-autistas. Ao utilizar denoising autoencoders, uma t?cnica de deep learning espec?fica que visa reduzir a dimensionalidade dos dados, n?s superamos o estado da arte, atingindo 69% de acur?cia, comparado com o melhor resultado encontrado na literatura, com 60% de acur?cia. / Autism Spectrum Disorders (ASD) comprise a range of neurodevelopmental disorders, characterized by social deficits and communication difficulties, repetitive behaviors, and cognitive delays. The diagnosis of ASD is largely based on behavioral measurements, which can be timeconsuming and relies on the patient cooperation and examiner expertise. In order to address this limitation, we aim to investigate neural patterns to help in the diagnosis of ASD. In this dissertation, we use deep learning techniques to extract robust characteristics from neuroimages of autistic subject brain function. Since neuroimage contains about 300,000 spatial points, with approximately 200 temporal measurements each, deep learning techniques are useful in order to extract important features to discriminate ASD subjects from non-ASD. By using denoising autoencoders, a specific deep learning technique that aims to reduce data dimensionality, we surpass the state-of-the-art by achieving 69% of accuracy, compared to 60% using the same dataset.
520

Exploring Transfer Learning via Convolutional Neural Networks for Image Classification and Super-Resolution

Ribeiro, Eduardo Ferreira 22 March 2018 (has links)
This work presents my research about the use of Convolutional Neural Network (CNNs) for transfer learning through its application for colonic polyp classification and iris super-resolution. Traditionally, machine learning methods use the same feature space and the same distribution for training and testing the tools. Several problems in this approach can emerge as, for example, when the number of samples for training (especially in a supervised training) is limited. In the medical field, this problem is recurrent mainly because obtaining a database large enough with appropriate annotations for training is highly costly and may become impractical. Another problem relates to the distribution of textural features in a image database which may be too large such as the texture patterns of the human iris. In this case a single and specific training database might not get enough generalization to be applied to the entire domain. In this work we explore the use of texture transfer learning to surpass these problems for two applications: colonic polyp classification and iris super-resolution. The leading cause of deaths related to intestinal tract is the development of cancer cells (polyps) in its many parts. An early detection (when the cancer is still at an early stage) can reduce the risk of mortality among these patients. More specifically, colonic polyps (benign tumors or growths which arise on the inner colon surface) have a high occurrence and are known to be precursors of colon cancer development. Several studies have shown that automatic detection and classification of image regions which may contain polyps within the colon can be used to assist specialists in order to decrease the polyp miss rate. However, the classification can be a difficult task due to several factors such as the lack or excess of illumination, the blurring due to movement or water injection and the different appearances of polyps. Also, to find a robust and a global feature extractor that summarizes and represents all these pit-patterns structures in a single vector is very difficult and Deep Learning can be a good alternative to surpass these problems. One of the goals of this work is show the effectiveness of CNNs trained from scratch for colonic polyp classification besides the capability of knowledge transfer between natural images and medical images using off-the-shelf pretrained CNNs for colonic polyp classification. In this case, the CNN will project the target database samples into a vector space where the classes are more likely to be separable. The second part of this work dedicates to the transfer learning for iris super-resolution. The main goal of Super-Resolution (SR) is to produce, from one or more images, an image with a higher resolution (with more pixels) at the same time that produces a more detailed and realistic image being faithful to the low resolution image(s). Currently, most iris recognition systems require the user to present their iris for the sensor at a close distance. However, at present, there is a constant pressure to make that relaxed conditions of acquisitions in such systems could be allowed. In this work we show that the use of deep learning and transfer learning for single image super resolution applied to iris recognition can be an alternative for Iris Recognition of low resolution images. For this purpose, we explore if the nature of the images as well as if the pattern from the iris can influence the CNN transfer learning and, consequently, the results in the recognition process. / Diese Arbeit pr¨asentiert meine Forschung hinsichtlich der Verwendung von ”Transfer-Learning” (TL) in Kombination mit Convolutional Neural Networks (CNNs), um dadurch die Klassifikation von Dickdarmpolypen und die Qualit¨at von Iris Bildern (”Iris-Super-Resolution”) zu verbessern. Herk¨ommlicherweise verwenden Verfahren des maschinellen Lernens den gleichen Merkmalsraum und die gleiche Verteilung zum Trainieren und Testen der abgewendeten Methoden. Mehrere Probleme k¨onnen bei diesem Ansatz jedoch auftreten. Zum Beispiel ist es m¨ oglich, dass die Anzahl der zu trainierenden Daten (insbesondere in einem ”supervised training” Szenario) begrenzt ist. Im Speziellen im medizinischen Anwendungsfall ist man regelm¨aßig mit dem angesprochenen Problem konfrontiert, da die Zusammenstellung einer Datenbank, welche ¨ uber eine geeignete Anzahl an verwendbaren Daten verf ¨ ugt, entweder sehr kostspielig ist und/oder sich als ¨ uber die Maßen zeitaufw¨andig herausstellt. Ein anderes Problem betrifft die Verteilung von Strukturmerkmalen in einer Bilddatenbank, die zu groß sein kann, wie es im Fall der Verwendung von Texturmustern der menschlichen Iris auftritt. Dies kann zu dem Umstand f ¨ uhren, dass eine einzelne und sehr spezifische Trainingsdatenbank m¨oglicherweise nicht ausreichend verallgemeinert wird, um sie auf die gesamte betrachtete Dom¨ane anzuwenden. In dieser Arbeit wird die Verwendung von TL auf diverse Texturen untersucht, um die zuvor angesprochenen Probleme f ¨ ur zwei Anwendungen zu ¨ uberwinden: in der Klassifikation von Dickdarmpolypen und in Iris Super-Resolution. Die Hauptursache f ¨ ur Todesf¨alle im Zusammenhang mit dem Darmtrakt ist die Entwicklung von Krebszellen (Polypen) in vielen unterschiedlichen Auspr¨agungen. Eine Fr ¨uherkennung kann das Mortalit¨atsrisiko bei Patienten verringern, wenn sich der Krebs noch in einem fr ¨uhen Stadium befindet. Genauer gesagt, Dickdarmpolypen (gutartige Tumore oder Wucherungen, die an der inneren Dickdarmoberfl¨ache entstehen) haben ein hohes Vorkommen und sind bekanntermaßen Vorl¨aufer von Darmkrebsentwicklung. Mehrere Studien haben gezeigt, dass die automatische Erkennung und Klassifizierung von Bildregionen, die Polypen innerhalb des Dickdarms m¨oglicherweise enthalten, verwendet werden k¨onnen, um Spezialisten zu helfen, die Fehlerrate bei Polypen zu verringern. Die Klassifizierung kann sich jedoch aufgrund mehrerer Faktoren als eine schwierige Aufgabe herausstellen. ZumBeispiel kann das Fehlen oder ein U¨ bermaß an Beleuchtung zu starken Problemen hinsichtlich der Kontrastinformation der Bilder f ¨ uhren, wohingegen Unsch¨arfe aufgrund von Bewegung/Wassereinspritzung die Qualit¨at des Bildmaterials ebenfalls verschlechtert. Daten, welche ein unterschiedlich starkes Auftreten von Polypen repr¨asentieren, bieten auch dieM¨oglichkeit zu einer Reduktion der Klassifizierungsgenauigkeit. Weiters ist es sehr schwierig, einen robusten und vor allem globalen Feature-Extraktor zu finden, der all die notwendigen Pit-Pattern-Strukturen in einem einzigen Vektor zusammenfasst und darstellt. Um mit diesen Problemen ad¨aquat umzugehen, kann die Anwendung von CNNs eine gute Alternative bieten. Eines der Ziele dieser Arbeit ist es, die Wirksamkeit von CNNs, die von Grund auf f ¨ ur die Klassifikation von Dickdarmpolypen konstruiert wurden, zu zeigen. Des Weiteren soll die Anwendung von TL unter der Verwendung vorgefertigter CNNs f ¨ ur die Klassifikation von Dickdarmpolypen untersucht werden. Hierbei wird zus¨atzliche Information von nichtmedizinischen Bildern hinzugezogen und mit den verwendeten medizinischen Daten verbunden: Information wird also transferiert - TL entsteht. Auch in diesem Fall projiziert das CNN iii die Zieldatenbank (die Polypenbilder) in einen vorher trainierten Vektorraum, in dem die zu separierenden Klassen dann eher trennbar sind, daWissen aus den nicht-medizinischen Bildern einfließt. Der zweite Teil dieser Arbeit widmet sich dem TL hinsichtlich der Verbesserung der Bildqualit¨at von Iris Bilder - ”Iris- Super-Resolution”. Das Hauptziel von Super-Resolution (SR) ist es, aus einem oder mehreren Bildern gleichzeitig ein Bild mit einer h¨oheren Aufl¨osung (mit mehr Pixeln) zu erzeugen, welches dadurch zu einem detaillierteren und somit realistischeren Bild wird, wobei der visuelle Bildinhalt unver¨andert bleibt. Gegenw¨artig fordern die meisten Iris- Erkennungssysteme, dass der Benutzer seine Iris f ¨ ur den Sensor in geringer Entfernung pr¨asentiert. Jedoch ist es ein Anliegen der Industrie die bisher notwendigen Bedingungen - kurzer Abstand zwischen Sensor und Iris, sowie Verwendung von sehr teuren hochqualitativen Sensoren - zu ver¨andern. Diese Ver¨anderung betrifft einerseits die Verwendung von billigeren Sensoren und andererseits die Vergr¨oßerung des Abstandes zwischen Iris und Sensor. Beide Anpassungen f ¨ uhren zu Reduktion der Bildqualit¨at, was sich direkt auf die Erkennungsgenauigkeit der aktuell verwendeten Iris- erkennungssysteme auswirkt. In dieser Arbeit zeigen wir, dass die Verwendung von CNNs und TL f ¨ ur die ”Single Image Super-Resolution”, die bei der Iriserkennung angewendet wird, eine Alternative f ¨ ur die Iriserkennung von Bildern mit niedriger Aufl¨osung sein kann. Zu diesem Zweck untersuchen wir, ob die Art der Bilder sowie das Muster der Iris das CNN-TL beeinflusst und folglich die Ergebnisse im Erkennungsprozess ver¨andern kann.

Page generated in 0.0906 seconds