• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 28
  • 28
  • 22
  • 18
  • 16
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of the RDD portion of the total pavement acceptance device and its applications to jointed concrete pavement studies

Lee, Jung Su, active 21st century 09 February 2015 (has links)
A Rolling Dynamic Deflectometer (RDD) is a nondestructive testing device for determining continuous deflection profiles of pavements. Theses deflection profiles can be used more effectively when combined with other data such as pavement thickness, variability in moisture and other subsurface conditions, void detection and pavement right-of-way conditions. Therefore, a new, multi-function pavement testing device has been developed by a joint effort between the Texas Department of Transportation (TxDOT), the Center for Transportation Research (CTR) at the University of Texas at Austin (UT) and the Texas A&M Transportation Institute (TTI) at Texas A&M University. This new device is called the Total Pavement Acceptance Device (TPAD). The objective of TPAD testing is to nondestructively and nonintrusively investigate the structural adequacy of the total pavement system. The multiple functions of the TPAD presently include the following measurement capabilities: (1) rolling dynamic deflectometer (RDD), (2) ground penetrating radar (GPR), (3) global positioning (GPS), (4) pavement surface temperature, (5) digital video imaging of pavement and right-of-way conditions and (6) longitudinal survey offsets from known points through distance measurement (DMI). The TPAD is currently designed to perform continuous measurements at speeds around 2 to 3 mph. The effort in this dissertation is directed at: (1) developing the fourth-generation rolling sensors for faster testing speeds with the TPAD, (2) developing the Jointed Concrete Pavement (JCP) testbed with known and well-documented conditions (3) developing and evaluating the TPAD mobile platform, (4) evaluating the performance of the fourth-generation rolling sensors and refining a field calibration procedure and (5) studying the influence of the longitudinal and transverse joints in Jointed Concrete Pavement on TPAD deflection profile measurements. The first part involved the study of previous research and preliminary testing using the second-generation rolling sensor. Key benefits of the fourth-generation rolling sensor are: (1) reduced rolling noise during the testing, (2) higher signal-to-noise ratio (SNR), and (3) better tracking of the sensor. The second part of this work involved the development of the JCP testbed at the Texas Department of Transportation (TxDOT), Flight Services Facility (FSF) adjacent to the Austin-Bergstrom International Airport (ABIA). The JCP testbed was developed to establish a pavement facility with known and well-documented conditions for use in future research dealing with rigid pavement testing. The third part of this work involved the acceptance testing of the TPAD mobile platform for the RDD deflection measurements. The mobile platform was the one of the key components to develop the new moving pavement testing device. The TPAD mobile platform was developed by modifying a small, off-road vibroseies built by Industrial Vehicle International, Inc. (IVI). Acceptance testing of each of the following components was performed: (1) automated speed control, (2) static loading system and (3) dynamic loading system. The fourth part of this work involved the TPAD deflection measurements at the testbed at the TxDOT FSF. The deflection profiles using the fourth-generation rolling sensors and TPAD were performed at the established testbed. During the performance evaluation testing, the new sensor positioning, towing and raising/lowering system was developed and installed in the TPAD. The fifth part of this study involved the deflection measurement using the TPAD-RDD system on the jointed concrete pavement. This study includes the repeatability of the TPAD deflection measurements, the influence of the proximity to the longitudinal and transverse joints in JCP on TPAD deflection measurements, deflection measurements under different pavement surface temperature, the characteristic of the TPAD-RDD deflections and the comparison between the Falling Weight Deflectometer and TPAD deflection measurement testing. / text
12

Field performance of dowel bars

Walters, Shane A. January 1999 (has links)
No description available.
13

Performance of instrumented flexible pavement

Macioce, Damon J. January 1997 (has links)
No description available.
14

Instrumentation for SPS-2

Sharkins, Anthony August January 1996 (has links)
No description available.
15

Investigating Impacts of Spring Thaw on Ontario Low-Volume Roads for Improved Asset Management

Muzzi, Thiago January 2024 (has links)
Pavements in Canada that are built on top of frost susceptible soil experience loss of support in early spring as the frozen structure begins thawing. To minimize pavement damage, low- volume roads rely on Spring Load Restrictions (SLR), since building these roads to withstand spring thaw is usually not feasible. However, implementing SLR increases operational costs to commercial transporters and impacts local economies. The Ministry of Transportation Ontario (MTO) is routinely faced with requests from the truck industry to lift restrictions on certain roads, and questioning from municipalities that seek understanding on the needs for SLR in their roads. To help answer these questions, a comprehensive study was performed at 15 Seasonal Load Adjustment (SLA) stations across Ontario. The data collected included Falling Weight Deflectometer (FWD) testing, borehole investigation, climatic data, traffic volumes, and pavement rehabilitation data. A backcalculation using the FWD data estimated pavement structural capacity and remaining service life for each SLA for different dates throughout spring, followed by a life cycle analysis using the rehabilitation data. The SLAs were divided in three groups of similar pavement support conditions based on the service life analysis results. Results indicate that none of Group 1 SLAs need load restrictions, with the calculated remaining service life being greater than 25 years for all test dates. Within Group 2, pavement recovery throughout spring suggests that SLR could extend service life, although generally not necessary for the intended life cycle. Results indicate most SLAs in Group 2 achieving a full life cycle from the last rehabilitation activities for estimates based on early spring parameters, suggesting that these roads were likely designed with spring conditions accounted for. For Group 3, the lack of structural support and low service life values indicate the need for strict load restrictions to avoid excessive damage and maintain serviceability. Pavements with high-quality subgrades, granular structures and non-frost susceptible materials, thick asphalt layers and major rehabilitation activities were found to generally perform well for spring conditions. However, with several site-specific conditions, an overall recommendation for implementation of SLR cannot be generalized based on the pavement structure and subgrade soil type alone. The structural condition and thawing behaviour of individual sites must be thoroughly understood before a decision is made, as investigation might indicate that some roads can withstand full traffic year-round and would not need SLR, while others might need more rigorous restrictions. In addition to the service life analysis, approximately 600 lane km of deflection data was collected using a Multi-Speed Deflectometer in Southern Ontario. Recommendations were made for potential applications of the equipment as a network screening device, able to identify weak road sections in a time and cost-effective manner prior to a detailed investigation using FWD; and for regular monitoring of road conditions at a network level, including the monitoring of seasonal variations. / Thesis / Master of Applied Science (MASc)
16

Network Level Decision-Making Using Pavement Structural Condition Information From The Traffic Speed Deflectometer

Shrestha, Shivesh 01 February 2022 (has links)
Pavement structural condition plays a critical role in the rate of pavement deterioration, yet most state highway agencies' network-level decision-making processes are primarily based on surface distresses. Despite the limitations of the traditional structural condition measuring devices, some states have experimented with stationary deflection devices for network-level applications. Over the past decade, continuous deflection devices have become capable of measuring the network-level pavement structural condition information. However, since the traffic speed deflection devices use newer technology, there is a need for guidelines on how the state agencies could make use of this information for pavement management decision-making. This dissertation developed processes and enhanced tools to incorporate the pavement structural condition from the TSD into Virginia's network-level pavement management process This first part of the study developed pavement deterioration models for a subset of road networks in Virginia, to show that the pavement structural condition as measured by the TSD has an impact on the rate of deterioration of the surface condition. A structural condition matrix was then developed to augment the treatment selection process currently used by VDOT. Application of the augmented matrix on the tested Interstate network resulted in reducing the percentage of the network requiring CM and increasing the percentage requiring PM and RM. The second part of the study investigated the possibility of using pavement deflection measurements obtained from the TSD for network-level structural evaluation of pavements in Virginia. The study reported that the structural condition obtained with the TSD can replace the structural condition obtained from the FWD that is currently used in the VDOT PMS. The effective structural number (SNeff) calculated from the TSD and FWD had similar distribution, and the calculated consistency between the TSD SNeff and FWD SNeff was higher than the consistency between the SNeff from two repeated sets of FWD measurements. The third part of the study simulated the network level decision-making approaches based on both the structural condition parameter and the surface condition parameter, considering cases with and without the pavement treatment interval. The study reported that network-level decisions based on the pavement surface condition alone can result in significantly different treatment selection, compared to decisions based on the pavement structural condition. The study reported savings of 9% and 11% for cases with and without considering the pavement treatment intervals, using decision-making based on the structural condition. / Doctor of Philosophy / Pavement structural condition plays a critical role in the rate of pavement deterioration, yet most state highway agencies' network-level decision-making processes are primarily based on surface distresses. Despite the limitations of the traditional structural condition measuring devices, some states have experimented with stationary deflection devices for network-level applications. Over the past decade, continuous deflection devices have become capable of measuring the network-level pavement structural condition information. However, since the traffic speed deflection devices use newer technology, there is a need for guidelines on how the state agencies could make use of this information for pavement management decision-making. This dissertation developed processes and enhanced tools to incorporate the pavement structural condition from the TSD into Virginia's network-level pavement management process' This first part of the study developed pavement deterioration models for a subset of road networks in Virginia, to show that the pavement structural condition as measured by the TSD has an impact on the rate of deterioration of the surface condition. A structural condition matrix was then developed to augment the treatment selection process currently used by VDOT. Application of the augmented matrix on the tested Interstate network resulted in reducing the percentage of the network requiring CM and increasing the percentage requiring PM and RM. The second part of the study investigated the possibility of using pavement deflection measurements obtained from the TSD for network-level structural evaluation of pavements in Virginia. The study reported that the structural condition obtained with the TSD can replace the structural condition obtained from the FWD that is currently used in the VDOT PMS. The effective structural number (SNeff) calculated from the TSD and FWD had similar distribution, and the calculated consistency between the TSD SNeff and FWD SNeff was higher than the consistency between the SNeff from two repeated sets of FWD measurements. The third part of the study simulated the network level decision-making approaches based on both the structural condition parameter and the surface condition parameter, considering cases with and without the pavement treatment interval. The study reported that network-level decisions based on the pavement surface condition alone can result in significantly different treatment selection, compared to decisions based on the pavement structural condition. The study reported savings of 9% and 11% for cases with and without considering the pavement treatment intervals, using decision-making based on the structural condition.
17

Development of structural condition thresholds for TSD measurements

Shrestha, Shivesh January 2017 (has links)
This thesis presents (a) results of a field evaluation of the Traffic Speed Deflectometer (TSD) in the United States (b) deflection thresholds to classify the pavement structural condition obtained from the TSD for a small subset of the Pennsylvania secondary road network. The results of the field evaluation included: (1) repeatability of the TSD, (2) ability of the TSD to identify pavement sections with varying structural conditions, and (3) consistency between the structural number (SNeff) calculated from the TSD and SNeff calculated by the Pennsylvania Department of Transportation (PennDOT). The results showed consistent error standard deviation in the TSD measurements and that the TSD was able to identify pavement sections that varied in structural condition. Comparison of the SNeff calculated with TSD measurements, using an empirically developed equation by Rohde, with the SNeff calculated by PennDOT’s Pavement Management System based on construction history showed similar trends, although the TSD-calculated SNeff was higher. In order to develop deflection thresholds, a model that related the pavement surface condition to pavement surface age and structural condition was developed. Structural condition thresholds were then selected so that the pavement surface condition predicted from the model for a 10-year-old pavement surface fell within one of the three condition categories (Good, Fair, and Poor), to identify pavements in good, fair and poor condition. With Overall Pavement Index(OPI) characterizing the surface condition and Deflection Slope Index(DSI) characterizing the structural condition, the DSI threshold that separates structurally good from structurally fair pavements was determined as follows: (1) the OPI threshold that separates pavements with good surface condition from those with fair surface condition was obtained from the Pennsylvania Pavement Management System (PMS) and (2) the DSI thresholds were calculated using the determined OPI value and the model equation. / Master of Science / This thesis presents (a) some of the results of a field evaluation of the Traffic Speed Deflectometer (TSD) in the United States (b) deflection thresholds to classify the pavement structural condition obtained from the TSD for a small subset of the Pennsylvania secondary road network. The results of the field evaluation included: (1) repeatability of the TSD: which is the variation in repeated TSD measurements on the same section of the road, (2) ability of the TSD to identify pavement sections with varying structural conditions, and (3) consistency between the structural number (SNeff) calculated from the TSD and SNeff calculated by the Pennsylvania Department of Transportation (PennDOT). The pavement structural number is an abstract number expressing the structural strength of the pavement. The results showed that the TSD measurements were repeatable and that the TSD was able to identify pavement sections that varied in structural condition. Comparison of the SNeff calculated with TSD measurements, using an empirically developed equation by Rohde, with the SNeff calculated by PennDOT Pavement Management System based on construction history showed similar trends, although the TSD-calculated SNeff was higher. In order to develop deflection thresholds to categorize pavements in different condition: good, fair and poor, a model that related the pavement surface condition to pavement surface age and structural condition was developed. Structural condition thresholds were then selected so that the pavement surface condition predicted from the model for a 10-year-old pavement surface fell within one of the three condition categories (Good, Fair, and Poor), to identify pavements in good, fair and poor condition. With Overall Pavement Index(OPI) characterizing the surface condition and Deflection Slope Index(DSI) characterizing the structural condition, the DSI threshold that separates structurally good from structurally fair pavements was determined as follows: (1) the OPI threshold that separates pavements with good surface condition from those with fair surface condition was obtained from the Pennsylvania Pavement Management System (PMS) and (2) the DSI thresholds were calculated using the determined OPI value and the model equation.
18

In-Situ Behavior of Geosynthetically Stabilized Flexible Pavement

Appea, Alexander Kwasi 16 December 1997 (has links)
The purpose of a geotextile separator beneath a granular base, or subbase in a flexible pavement system is to prevent the road aggregate and the underlying subgrade from intermixing. It has been hypothesized that in the absence of a geotextile, intermixing between base course aggregate and soft subgrade occurs. Nine heavily instrumented flexible pavement test sections were built in Bedford County Virginia to investigate the benefits of geosynthetic stabilization in flexible pavements. Three groups of different base course thicknesses (100, 150 and 200mm) test sections were constructed with either geotextile or geogrid stabilization or no stabilization. Woven geotextile was used in sections 2, 5 and 8. Geogrids were used in sections 3, 6 and 9, and sections 1, 4 and 7 were controls. Six Falling weight deflectometer (FWD) tests were performed on all the nine sections over 30 months. The nine sections were subjected to at least 5 load drops with wide loading range each time. The measured deflections were analyzed using the MODULUS back-calculation program to determine layer moduli. The measured deflections were used together with elastic, viscoelastic and the MODULUS program to determine the extent of intermixing at base-subgrade interface. The study concluded that a transition layer would develop when a separator is absent, especially in the weak sections (designed to fail in three years). Other measurements such as in-situ stresses, rut depth, and subsurface profiling (using ground penetrating radar) support the conclusion of the development of a transition layer. / Master of Science
19

Field performance of geogrid reinforced low-volume pavements

Joshi, Rutuparna Vidyadhar 05 November 2010 (has links)
For the past three decades, geosynthetics have been recognized as materials that can significantly improve the performance of pavements on weak subgrade. Pavements exhibit non-linear elasto-plastic behavior. The addition of geosynthetics is undoubtedly beneficial. This being said, researchers have concentrated more on lower life cycle cost and high benefit-cost ratio whereas much less attention has been given to the complex behavior of the reinforced pavement system. Comprehension of the short-term and long-term field performance of reinforced pavements under continued traffic and cyclic environmental loading has remained unexplored. There is empirical evidence indicating quantitative benefits of reinforced versus unreinforced pavement structure. However, quantification of the relative benefits of different types of reinforcement like geogrids and geotextiles lacks information. Further, evaluation of the benefits and comparison of chemical stabilization in the form of lime treatment with mechanical stabilization in the form of reinforcement for pavements on soft soils has received lack of attention. In view of this, full-scale instrumented reinforced and lime treated pavement sections with different schemes were studied. Regular Falling Weight Deflectometer (FWD) testing was conducted in a Farm-to-Market Road, in Grimes County, Texas. Three different geosynthetic products were used for base reinforcement and lime treatment was used for subbase stabilization. Deflection measurements for 9 field trips in 3.5 years were evaluated. Modified deflection basin parameters (DBPs) were defined to typically identify layer properties and were used to measure the relative damage to the base, subbase and subgrade for different sections. A modified Base Damage Index (BDI) and a modified Base Curvature Index (BCI) were defined as a part of this study to capture the benefit of reinforced base and lime stabilized subbase respectively. The variation in the DBPs over three periods of wetting and drying along with explanation of the observed trends forms a part of this research. In addition, a number of condition surveys were performed, during 3 years, to visually identify distresses in various sections. A unique distress quantification technique was developed for measuring deterioration of the pavement sections in terms of the observed distresses and FWD measurements. With this, an index of pavement performance was developed. Thus, the FWD deflection data analyses complemented by visual observation, reveals important information on performance of different geosynthetics with the same base course. Analysis of the field performance of the multiple experimental sections throws light on the relative merits of base reinforcement against lime stabilization. / text
20

Relationship Between Resilient Modulus And Soil Index Properties Of Unbound Materials

Coleri, Erdem 01 August 2007 (has links) (PDF)
In the mechanistic design approach, which has already been started to utilize in several countries, the variations in material properties are better taken into account based on fundemental engineering principles. Resilient modulus is the most important material property that is used in the mechanistic design since it describes the true martial performance of unbound pavement layers under traffic loading. In this thesis, the objective is to determine the resilient modulus, used in the mechanistic design of pavement structures, for the unbound material types used in Turkey and develop linear and nonlinear prediction models to determine resilient response of unbound layers based on soil index properties, California Bearing Ratio (CBR) and Light Falling Weight Deflectometer (LFWD) test results. Application of genetic algorithm and curve shifting methodology to estimate design resilient modulus at various stress states is also investigated using the test results for finegrained soils. Resilient modulus estimation for a constant stress state based on genetic algorithm and curve shifting methodolgy is quite promising for fine-grained soils since nonlinear constitutive models do not have the capability of representing resilient responses under different conditions. Furthermore, tree-based modeling is discussed as an alternative way to develop resilient modulus prediction models. The outcome of the study will be a basis for the performance based design specifications of flexible pavements.

Page generated in 0.0528 seconds