• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 24
  • 19
  • 12
  • 8
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 236
  • 46
  • 39
  • 36
  • 28
  • 28
  • 27
  • 27
  • 23
  • 23
  • 22
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

High voltage, high resolution, digital-to-analog converter for driving deformable mirrors

Kittredge, Jeffrey Prax 12 March 2016 (has links)
Digital-to-analog converters with a range over 50 volts are required for driving micro-electro mechanical system deformable mirrors used in adaptive optics. An existing tested and deployed DM driver has 1024 channels and resolution of 15mV per Least Significant Bit. DMs used in the search for exoplanets require 3mV per LSB resolution. A technique is presented to employ a secondary high resolution and low voltage DAC which has for it's ground the output of the high voltage DAC. The entire system then has the range of high voltage DAC yet the resolution of the low voltage DAC. A method for providing signal and power to the floating system is given. Rudimentary micro controller firmware and also PC software is presented to achieve complete functionality. The technique uses all off-the-shelf components. Resolution of 1.6mV per LSB, 60V range and 36mW of power per channel is achieved.
32

On the Free Surface Skipping Characteristics of Highly Deformable Elastic Spheres

Hurd, Randy C 01 June 2015 (has links)
When a highly deformable elastic sphere impacts a water surface at an oblique angle it can skip several times in a manner similar to a skipping stone. However, this sphere seems to skip more readily and with more ease than a traditional skipping stone. This thesis examines the improved skipping characteristics of highly deformable elastic spheres made from cured silicone rubber. The effect of impact velocity, impact angle, sphere diamter and material shear modulus on ricochet trajectory is experimentally examined using high speed photography and image processing techniques. Experimental evaluation shows that deformation is the primary contributor to an increased lift force upon impact. An analytical model is presented in addition to a regime diagram predicting ricochet results from impact conditions.
33

Integration of deformable tire-soil interaction simulation capabilities in physics-based off-road mobility solver

Peterson, Bryan 01 December 2016 (has links)
The objective of this study is to integrate a continuum-based deformable tire and terrain interaction model into a general-use physics-based simulation environment capable of off-road vehicle mobility analysis and high-performance computing potential. Specifically, the physics-based deformable tire and terrain models which were recently proposed and validated by Yamashita, et al. will be implemented into the structure of the multi-physics simulation engine Chrono. In off-road vehicle mobility analysis, empirical and analytical models have been commonly used for vehicle-terrain interaction. While these models utilize experimental data or terramechanics theories to create quick predictive mobility models, they are unable to capture the highly nonlinear behavior of soft soil deformation, which can lead to inaccurate or unreliable results. In order to resolve these limitations, the use of physics-based numerical approaches have been proposed. These methods make use of finite element and discrete element simulations to describe the interaction between the vehicle and deformable terrain. Continuum-based finite element models transfer tire forces to the terrain and model the deformation with elasto-plastic constitutive models. Discrete element soil uses a large number of small rigid body particles to describe the microscale behavior of granular terrain, with the deformation of the soil represented by the motion and contact of the particles. While these physics-based models offer a more accurate vehicle-terrain interaction model, the solution procedure can become complex and computationally expensive since co-simulation techniques are often used. To address these issues, the analysis of physics-based full vehicle dynamics simulations utilizing high-fidelity deformable tire and terrain models in a multi-physics engine with high-performance computing capability is desired. To this end, a continuum mechanics based shear deformable laminated composite shell element proposed by Yamashita, et al. was integrated into the flexible body dynamics simulation framework of Chrono. This element was based on the absolute nodal coordinate formulation and is defined by the global position coordinates and the transverse gradient coordinates of its four nodes. Element lockings are eliminated with the incorporation of the enhanced assumed strain (EAS) and assumed natural strain approaches (ANS). The element formulation includes an extension to model laminated composite materials. Additionally, a locking-free 9-node brick element was integrated into the Chrono framework that makes use of the curvature coordinates at the center of the element. This element is formulated with the Hencky strain measure such that multiplicative finite strain plasticity theory can be used to incorporate soil plasticity models, such as the capped Drucker-Prager failed criterion. With the shear deformable laminated composite shell element and plastic soil brick element integrated into the Chrono multi-physics simulation engine, an off-road deformable tire and terrain interaction model was developed using the vehicle dynamics simulation module Chrono::Vehicle. An off-road deformable tire model was parameterized based on commercial tire properties and generated as an interchangeable tire model option in the full vehicle dynamics system. Benchmark verification tests were performed to ensure the accuracy of tire deformation and tire force characteristics. Further tests were performed to validate a deformable tire model with a deformable tread pattern constructed from shear deformable shell elements and co-rotational tetrahedral elements. The deformable soil model was also integrated as a terrain option in Chrono::Vehicle and numerical tests were carried out to demonstrate its interaction with rigid and deformable tire models. To make use of the computational performance enhancements available in Chrono, Open Multi-Processing (OpenMP) and Advanced Vector Extensions (AVX) were applied to the evaluation of the elastic force/Jacobian matrix and large matrix operations of flexible bodies, respectively, in order to reduce the computation time by nearly 60%.
34

Water Surface Impact and Ricochet of Deformable Elastomeric Spheres

Hurd, Randy Craig 01 December 2017 (has links)
Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this “football” dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface.
35

Improved Biomolecular Crystallography at Low Resolution with the Deformable Complex Network Approach

Zhang, Chong 24 July 2013 (has links)
It is often a challenge to atomically determine the structure of large macromolecular assemblies, even if successfully crystallized, due to their weak diffraction of X-rays. Refinement algorithms that work with low-resolution diffraction data are necessary for researchers to obtain a picture of the structure from limited experimental information. Relationship between the structure and function of proteins implies that a refinement approach delivering accurate structures could considerably facilitate further research on their function and other related applications such as drug design. Here a refinement algorithm called the Deformable Complex Network is presented. Computation results revealed that, significant improvement was observed over the conventional refinement and DEN refinement, across a wide range of test systems from the Protein Data Bank, indicated by multiple criteria, including the free R value, the Ramachandran Statistics, the GDT (<1Å) score, TM-score as well as associated electron density map.
36

Orienting Deformable Polygonal Parts without Sensors

Kristek, Shawn 2011 December 1900 (has links)
Parts orienting is an important part of automated manufacturing. Sensorless manipulation has proven to be a useful paradigm in addressing parts orienting, and the manipulation of deformable objects is a growing area of interest. Until now, these areas have remained separate because existing orienting approaches utilize forces that if applied to deformable parts violate the assumptions used by existing algorithms, and could potentially break the part. We introduce a new algorithm and manipulator actions that, when provided with the geometric description and a deformation model of choice for the part, exploits the deformation and generates a Plan that consists of the shortest sequence of manipulator actions guaranteed to orient the part up to symmetry from any unknown initial orientation and pose. Additionally, the algorithm estimates whether a given manipulator is sufficiently precise to perform the actions which guarantee the final orientation. This is dictated by the particular part geometry, deformation model, and the manipulator action path planner which contains simple end-effector constraints and any standard motion planner. We illustrate the success of the algorithm with multiple parts through 192 trials of experiments that were performed with low-precision robot manipulators and six parts made of four types of materials. The experimental trials resulted in 154 successes, which show the feasibility of deformable parts orienting. The analysis of the failures showed that for success the assumptions of zero friction are essential for this work, increased manipulator precision would be beneficial but not necessary, and a simple deformation model can be sufficient. Finally, we note that the algorithm has applications to truly sensorless manipulation of non-deformable parts.
37

Application of Template Update to Visual Servo for a Deformable Object

Chou, Cheng-te 04 August 2008 (has links)
A monocular visual servo system for a target with variable shape has been developed in this paper. It consists of two parts: an image-processing unit and a servo control unit. For the image-processing unit, the motion between the target and image center is determined by a template match approach. The image is grabbed by the camera equipped on a Pan-Tilt robot and the robot is controlled to track the target by maintaining the target on the image center. However, the template needs to be updated when the target deforms. For the servo control unit, the movement is estimated by the Kalman filter technique to enhance the tracking performance of the visual servo system.
38

Real-time terrain rendering with large geometric deformations

Dahlbom, Anders January 2003 (has links)
<p>Computer gamers demand more realistic effects for each release of a new game. This final year project is concerned with deforming the geometry in a terrain rendering environment. The intension is to increase the resolution where the original resolution of the terrain is not enough to cater for all the details associated with a deformation, such as an explosion.</p><p>An algorithm for extending the maximum available resolution was found, the DEXTER algorithm, but calculations have shown that it has a too high memory consumption to be feasible in a game environment. In this project, an algorithm has been implemented, based on the DEXTER algorithm, but with some structural changes. The algorithm which has been implemented increases the resolution, if needed, where a deformation occurs. The increased resolution is described by b-spline surfaces, whereas the original resolution is given by a height map. Further, graphics primitives are only allocated to a high resolution region, when needed by the refinement process.</p><p>It has been found that by using dynamic blocks of graphics primitives, the amount of RAM consumed can be lowered, without a severe decrease in rendering speed. However, the algorithm implemented has been found to suffer from frame rate drops, if too many high resolution cells need to be attached to the refinement process during a single frame.</p><p>Is has been concluded that the algorithm, which is the result of this final year project, is not suitable for a game environment, as the memory consumption is still too high. The amount of time spent on refining the terrain can also be considered too much, as no time is left for other aspects of a game environment.</p><p>The algorithm is however considered a good choice concerning deformations, as the updates needed in association with a deformation, can be kept small and localized, according to the DEXTER structure. Also, the b-spline surfaces offer more freedom over the deformation, compared to using a height map.</p>
39

Validation of Deformable Image Registration for Head & Neck Cancer Adaptive Radiotherapy

Ramadaan, Ihab Safa January 2013 (has links)
Anatomical changes can have significant clinical impact during head and neck radiotherapy. Adaptive radiotherapy (ART) may be applied to account for such changes. Implementation of ART to alter dose delivery requires deformable image registration (DIR) to assess 3D deformations. This study evaluates the performance and accuracy of a commercial DIR system for clinical applications. The investigations in this project were carried out using images of induced changes in two standard radiotherapy phantoms (RANDO® and CIRS®) and one in-house built phantom. CT image data before and after deformation of the phantoms were processed using Eclipse / SmartAdapt® v.10 system employing a Demons-based algorithm. A DIR protocol was designed, and algorithm performance was assessed quantitatively, using volume analysis and the Dice Similarity Index (DSI), and also evaluated qualitatively. In addition, algorithm performance was assessed for 5 head and neck cancer patients using clinical CT images. Each original planning CT image containing contours of 10 volumes of interest including treatment target volumes and organs at risk was deformed to match a second CT image acquired during the course of the treatment. The original structures were deformed, copied onto the target image and compared to reference contours drawn by 3 radiation oncologists. Phantom investigations gave varied results with average DSI scores ranging from 0.69 to 0.93, with an overall average of 0.86 ± 0.08. These quantitative results were reflected qualitatively, with generally accurate matching between reference and DIR-generated structures. Although air gaps in the phantoms compromised algorithm performance and gave rise to physically aberrant results. Clinical results were generally better with a DSI range of 0.75-0.99 and an overall average of 0.89 ± 0.05, suggesting high DIR accuracy. Qualitatively, some minor contour deformations were noted, as well as artefacts in the axial direction that were due to the CT slice resolution (3 mm) that was used to scan the patients. In addition, contour propagation between images using DIR reduced the time required by physicians to contour the images of head and neck cancer patients by ~47%. This study demonstrated that deformable image registration using a Modified Demons algorithm yields clinically acceptable results and time-saving benefits in contouring that improve clinical workflow. The study also showed that it is feasible to incorporate deformable image registration as part of an adaptive radiotherapy strategy for head and neck cancer, provided further studies are designed to carry out accurate and verifiable dose deformation.
40

MODELING AND FABRICATION OF LIGHTWEIGHT, DEFORMABLE MIRRORS SUBJECTED TO DISCRETE LOADING

Roche, Michael E. 01 January 2001 (has links)
The push towards larger diameter space telescope mirrors has caused the space industry to look at lightweight, deformable alternatives to the traditional monolithic mirror. One possible solution to the dilemma is to use the piezoelectric properties of certain materials to create a lightweight, deformable mirror. Current piezoelectric deformable mirror designs use individual actuators, creating an immensely complex system as the mirrors increase in size. The objective of this thesis is to aid in the design and development of lightweight, deformable mirrors for use in space based telescopes. Two topics are considered to aid this development. A doubly curved, lightweight, bimorph mirror is investigated. The fabrication method entails forming a thin film piezoelectric polymer into a doubly curved shape using a specially designed forming machine. The second topic entails the finite element modeling of a composite mirror substrate with a piezoceramic actuator backing. The model is generated using a meshing program designed to generate off-centered spot loads of electric potential. These spot loads simulate the actuation due to an electron gun. The effects of spot location and size on mirror deformation are examined.

Page generated in 0.038 seconds