• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Drive Electronics for Deformable Mirrors of Telescope Adaptive Optics Systems

Niebergal, Joel 30 April 2013 (has links)
This thesis deals with the design and experimental validation of Deformable Mirror Electronics (DME) for Extremely Large Telescope (ELT) Adaptive Optics (AO) applications. Modern ground based telescopes achieve their best possible imaging resolution through the application of AO. However, due to the fundamental diffraction of optical elements, the next generation of ELTs will employ primary mirrors of an increasingly large diameter as the final means of improving imaging resolution further. The corresponding increase in diameter and actuator count of the Deformable Mirrors (DMs) in these systems has led to the rapid development of high order DM technology. A significant challenge to operating these multi-thousand channel DMs is related to the DM Electronics (DME), which are required to be highly efficient so-as to operate within practical budgetary constraints. This thesis develops a DME reference design based on the requirements for the Thirty Meter Telescope’s next generation AO system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which operates two DMs with a total of 7673 piezoelectric actuators. The basis of the DME is the DM actuator driver, which has been developed to be suitable for very high order reproduction by optimization of its size, power, cost and reliability. A complication is that the piezoelectric actuators in NFIRAOS DMs require high voltage drive signals of ±400 V to obtain the rated stroke and must be current limited to avoid damage. Candidate amplifiers are evaluated in simulation and hardware based on a combination of performance, physical and functional criteria; with the most suitable circuit chosen for a multi-channel prototype implementation and testing with a DM breadboard prototype. The development and optimization of an amplifier capable of meeting NFIRAOS performance criteria and budgetary constraints is demonstrated. / Graduate / 0544 / 0606
2

Low power high resolution electronic driver for deformable mirror systems

Dai, Shanshan January 2012 (has links)
Thesis (M.Sc.Eng.) PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / This thesis presents an integrated driver for deformable mirror array based on the architecture proposed in Horenstein, et al's "Ultra-low power multiplexed electronic driver for high resolution deformable mirror systems." The integrated driver consists of numerous high voltage (HV) analog switches connecting the deformable mirror cells, on demand by low-voltage digital control signals, to the HV analog signal line, and a HV power amplifier used to drive the HV analog signal line. The reduction of power consumption is essential in both HV power amplifier and analog switch designs for utilization of deformable mirror systems in space-based applications. In addition to low power design, this work also focuses on the analysis and design of multi-stage amplifier capable to drive large load capacitor, and HV analog switch robust to analog signal noise during OFF state. The specific research contributions of this work include (1) A feed-forward stage in combination with a class B output stage is proposed in the HV multi-stage power amplifier structure to improve the large-signal performance when driving large capacitive load. (2) A low voltage level-shifter and a voltage clamp are added in conventional HV analog switch to reduce the interference from the noisy analog signal line. / 2031-01-01
3

Development of a novel three-dimensional deformable mirror with removable influence functions for high precision wavefront correction in adaptive optics system

Huang, Lei, Zhou, Chenlu, Gong, Mali, Ma, Xingkun, Bian, Qi 27 July 2016 (has links)
Deformable mirror is a widely used wavefront corrector in adaptive optics system, especially in astronomical, image and laser optics. A new structure of DM-3D DM is proposed, which has removable actuators and can correct different aberrations with different actuator arrangements. A 3D DM consists of several reflection mirrors. Every mirror has a single actuator and is independent of each other. Two kinds of actuator arrangement algorithm are compared: random disturbance algorithm (RDA) and global arrangement algorithm (GAA). Correction effects of these two algorithms and comparison are analyzed through numerical simulation. The simulation results show that 3D DM with removable actuators can obviously improve the correction effects.
4

Modelling MEMS deformable mirrors for astronomical adaptive optics

Blain, Celia 14 January 2013 (has links)
As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full on-axis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024-actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation. / Graduate
5

The Art of Optical Aberrations

Wylde, Clarissa Eileen Kenney, Wylde, Clarissa Eileen Kenney January 2017 (has links)
Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist’s compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.
6

MODELING AND FABRICATION OF LIGHTWEIGHT, DEFORMABLE MIRRORS SUBJECTED TO DISCRETE LOADING

Roche, Michael E. 01 January 2001 (has links)
The push towards larger diameter space telescope mirrors has caused the space industry to look at lightweight, deformable alternatives to the traditional monolithic mirror. One possible solution to the dilemma is to use the piezoelectric properties of certain materials to create a lightweight, deformable mirror. Current piezoelectric deformable mirror designs use individual actuators, creating an immensely complex system as the mirrors increase in size. The objective of this thesis is to aid in the design and development of lightweight, deformable mirrors for use in space based telescopes. Two topics are considered to aid this development. A doubly curved, lightweight, bimorph mirror is investigated. The fabrication method entails forming a thin film piezoelectric polymer into a doubly curved shape using a specially designed forming machine. The second topic entails the finite element modeling of a composite mirror substrate with a piezoceramic actuator backing. The model is generated using a meshing program designed to generate off-centered spot loads of electric potential. These spot loads simulate the actuation due to an electron gun. The effects of spot location and size on mirror deformation are examined.
7

Novel Segment Deformable Mirror Based Adaptive Attenuator Used In Wavelength Division Multiplexed Optical Communications Network

Huang, Zhengyu 19 September 2002 (has links)
In wavelength division multiplexed (WDM) optical communication networks, signals are amplified periodically by optical amplifiers. Since the gain profiles of optical amplifiers are not flat, equalizers are usually used to maintain signal powers at different wavelengths in equal to avoid crosstalk and data loss. However, fixed attenuation can only compensate fixed input power and amplification. In active network, input power and amplifier gain change with time. Active level compensation at each wavelength is needed. An adaptive attenuator is a device with a chromatically variable transmissivity used to equalize channel powers in wavelength-division multiplexing (WDM) fiber-optic communication lines. In this thesis, a method of Fourier analysis of multi-beam interference is developed. It is shown that the total electric field and relative phase delay of each beam form a Fourier transform pair. Thus methods and properties of Fourier analysis are applicable in multi-beam interference analysis and design. Fourier transform based design is presented. Novel devices that apply such design principles are introduced. Principles and structures of novel adaptive attenuators based on various technologies such as segment deformable mirror, liquid crystal, phase modulation array are given. Simulation results for segment deformable mirror based adaptive attenuator are presented. / Master of Science
8

Active Reflective Components for Adaptive Optical Zoom Systems

Jungwirth, Matthew Edward Lewis January 2012 (has links)
This dissertation presents the theoretical and experimental exploration of active reflective components specifically for large-aperture adaptive optical zoom systems. An active reflective component can change its focal length by physically deforming its reflecting surface. Adaptive optical zoom (AOZ) utilizes active components in order to change magnification and achieve optical zoom, as opposed to traditional zooming systems that move elements along the optical axis. AOZ systems are theoretically examined using a novel optical design theory that enables a full-scale tradespace analysis, where optical design begins from a broad perspective and optimizes to a particular system. The theory applies existing strategies for telescope design and aberration simulation to AOZ, culminating in the design of a Cassegrain objective with a 3.3X zoom ratio and a 375mm entrance aperture. AOZ systems are experimentally examined with the development of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.
9

Modeling and Control of a Magnetic Fluid Deformable Mirror for Ophthalmic Adaptive Optics Systems

Iqbal, Azhar 13 April 2010 (has links)
Adaptive optics (AO) systems make use of active optical elements, namely wavefront correctors, to improve the resolution of imaging systems by compensating for complex optical aberrations. Recently, magnetic fluid deformable mirrors (MFDM) were proposed as a novel type of wavefront correctors that offer cost and performance advantages over existing wavefront correctors. These mirrors are developed by coating the free surface of a magnetic fluid with a thin reflective film of nano-particles. The reflective surface of the mirrors can be deformed using a locally applied magnetic field and thus serves as a wavefront corrector. MFDMs have been found particularly suitable for ophthalmic imaging systems where they can be used to compensate for the complex aberrations in the eye that blur the images of the internal parts of the eye. However, their practical implementation in clinical devices is hampered by the lack of effective methods to control the shape of their deformable surface. The research work reported in this thesis presents solutions to the surface shape control problem in a MFDM that will make it possible for such devices to become integral components of retinal imaging AO systems. The first major contribution of this research is the development of an accurate analytical model of the dynamics of the mirror surface shape. The model is developed by analytically solving the coupled system of fluid-magnetic equations that govern the dynamics of the surface shape. The model is presented in state-space form and can be readily used in the development of surface shape control algorithms. The second major contribution of the research work is a novel, innovative design of the MFDM. The design change was prompted by the findings of the analytical work undertaken to develop the model mentioned above and is aimed at linearizing the response of the mirror surface. The proposed design also allows for mirror surface deflections that are many times higher than those provided by the conventional MFDM designs. A third contribution of this thesis involves the development of control algorithms that allowed the first ever use of a MFDM in a closed-loop adaptive optics system. A decentralized proportional-integral (PI) control algorithm developed based on the DC model of the wavefront corrector is presented to deal mostly with static or slowly time-varying aberrations. To improve the stability robustness of the closed-loop AO system, a decentralized robust proportional-integral-derivative (PID) controller is developed using the linear-matrix-inequalities (LMI) approach. To compensate for more complex dynamic aberrations, an Hinf controller is designed using the mixed-sensitivity Hinf design method. The proposed model, design and control algorithms are experimentally tested and validated.
10

Modeling and Control of a Magnetic Fluid Deformable Mirror for Ophthalmic Adaptive Optics Systems

Iqbal, Azhar 13 April 2010 (has links)
Adaptive optics (AO) systems make use of active optical elements, namely wavefront correctors, to improve the resolution of imaging systems by compensating for complex optical aberrations. Recently, magnetic fluid deformable mirrors (MFDM) were proposed as a novel type of wavefront correctors that offer cost and performance advantages over existing wavefront correctors. These mirrors are developed by coating the free surface of a magnetic fluid with a thin reflective film of nano-particles. The reflective surface of the mirrors can be deformed using a locally applied magnetic field and thus serves as a wavefront corrector. MFDMs have been found particularly suitable for ophthalmic imaging systems where they can be used to compensate for the complex aberrations in the eye that blur the images of the internal parts of the eye. However, their practical implementation in clinical devices is hampered by the lack of effective methods to control the shape of their deformable surface. The research work reported in this thesis presents solutions to the surface shape control problem in a MFDM that will make it possible for such devices to become integral components of retinal imaging AO systems. The first major contribution of this research is the development of an accurate analytical model of the dynamics of the mirror surface shape. The model is developed by analytically solving the coupled system of fluid-magnetic equations that govern the dynamics of the surface shape. The model is presented in state-space form and can be readily used in the development of surface shape control algorithms. The second major contribution of the research work is a novel, innovative design of the MFDM. The design change was prompted by the findings of the analytical work undertaken to develop the model mentioned above and is aimed at linearizing the response of the mirror surface. The proposed design also allows for mirror surface deflections that are many times higher than those provided by the conventional MFDM designs. A third contribution of this thesis involves the development of control algorithms that allowed the first ever use of a MFDM in a closed-loop adaptive optics system. A decentralized proportional-integral (PI) control algorithm developed based on the DC model of the wavefront corrector is presented to deal mostly with static or slowly time-varying aberrations. To improve the stability robustness of the closed-loop AO system, a decentralized robust proportional-integral-derivative (PID) controller is developed using the linear-matrix-inequalities (LMI) approach. To compensate for more complex dynamic aberrations, an Hinf controller is designed using the mixed-sensitivity Hinf design method. The proposed model, design and control algorithms are experimentally tested and validated.

Page generated in 0.0566 seconds