• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical Limiting and Degenerate Four-Wave Mixing in Novel Fullerenes

Marciu, Daniela 23 February 1999 (has links)
Two experimental methods, optical limiting and degenerate four-wave mixing, are employed to study the nonlinear optical properties of various novel fullerenes structures. Optical limiting refers to decreased transmittance of a material with increased incident light intensity. Detailed measurements of the wavelength-dependence of fullerene optical limiters have illustrated several key features of reverse saturable absorption. Most important among these is the requirement of weak but non-negligible ground state absorption. We have shown that the optical limiting performance of C₆₀ can be extended into the near infrared range by appropriate modifications of the structure such as higher cage fullerenes or derivatization of the basic C₆₀ molecule. The higher cage fullerene C₇₆ shows improved optical limiting behavior compared to C₆₀, for wavelengths higher than 650 nm, but becomes a weak limiter in the 800 nm range. C₈₄, even at high concentrations in [alpha]-chloronaphthalene, does not reach the good performance of C₆₀, but instead shows weak optical limiting in the 800 nm range. We also demonstrate that by attaching various groups to the C₆₀ molecule, we can extend the optical limiting performance in the near infrared regime. The C₆₀ derivatives studied, (C₆₀ cyclic ketone, C₆₀ secondary amine, C₆₀CHC₆H₄CO₂H, and C₆₀C₄H₄(CH₃)CH₂O₂C(CH₂)CO₂H), have a similar characteristic: the attached groups cause a symmetry-breaking of the C₆₀ sphere and, therefore, there are new allowed transitions that appear as absorption features up to 750 nm. The optical limiting measurements show that these materials, even for low input energies, have an exceptionally strong optical limiting response in the 640 to 750 nm spectral region. For wavelengths higher than 800 nm, however, they become transparent and no optical limiting is observed. Excited state absorption cross-sections obtained from analysis of the optical limiting data reveal that the C₆₀ derivatives have a maximum triplet-triplet absorption cross-section at 700 nm, which is shifted from the 750 nm value for the C₆₀ molecule. For the first time, optical limiting measurements are performed on five separate C₈₄ isomers. These intriguing results show that the optical limiting behavior is strongly dependent on the cage symmetry. It is also found that the most abundant isomer does not have the strongest optical limiting performance, but is in fact one of the weaker optical limiters of the isomers isolated so far. The endohedral metallofullerenes are a unique class of fullerene materials and consist of one or more metal atoms encapsulated inside the buckyball cage. An important characteristic of these materials is the charge-transfer from the dopant atoms to the fullerene cage, which has a high electron affinity. The charge-transfer is similar to the optical excitation in a material, but although the electrons are placed in the lowest unoccupied molecular orbital (LUMO), there are no holes produced in the highest occupied molecular orbital (HOMO). This is an important analogy, since it has been previously shown that optical excitation enhances the nonlinear optical properties of a material. The nonresonant degenerate four-wave mixing experiments performed on the endohedral metallofullerene Er₂@C₈₂, at 1064 nm, show that the third order nonlinear susceptibility value is increased by orders of magnitude relative to the empty cage fullerenes, thus, confirming the charge-transfer process from the encapsulated atoms to the fullerene cage. We obtain a value [gamma]<sub>xyyx</sub><sup>(3)</sup>( &#173 [omega]; [omega], [omega], &#173 [omega])= &#173 8.65 &#215 10⁻³² esu for the molecular second order hyperpolarizability, which is almost three orders of magnitude larger than the values reported in literature for an empty cage fullerene. / Ph. D.
2

Enhancing the Third-Order Nonlinear Optical Properties of Porphyrins and Molecular Wires

Humphrey, Jonathan L. 01 January 2006 (has links)
The third-order nonlinear optical (NLO) properties of indium tin oxide (ITO) thin films, Fe3+, Mn3+, Co2+ 5,10,15,20-tetrakis-4hydroxytetraphenyl)porphyrin (TPP) films, and a series of ethynyl-linked azobenzene oligomers were investigated using degenerate four wave mixing (DFWM) with 100 fs laser pulses. To measure the NLO of ITO thin films, A DFWM method for measuring thin films on thick substrates was refined for the characterization of films less than 100 nm thick and applied to ITO films ~25 nm thick. It was found that the third-order nonlinear susceptibility of ITO, χ(3)ITO, is purely electronic at 900 - 1300 nm (11000 - 7700 cm-1) and has a value of (2.16 ± 0.18) x 10-l8 m2 V-2. The χ(3)IT0 value reaches (3.36 ± 0.28) x 10-l8 m2 V(sup>-2 at 1500 nm (6700 cm-1) due to two-photon absorption by free carriers (electrons). Ultrafast electron relaxation was also observed. The ~100 fs lifetime of this process could reflect electron scattering in the conduction band. This DFWM method was also used to investigate the two-photon properties of ~500 nm thick electropolymerized films of Fe3+, Mn3+, and Co2+ TPP in the near-IR spectral region. Metalloporphyrins with strong charge transfer (CT) transitions inthe linear absorption spectra also show enhanced two-photon absorption. (Metalloporphyrin two-photon absorption cross section, δ, increases >10 times over that for the metal free porphyrin.) This effect was attributed to a two-photon induced charge transfer between the metal ion's d orbitals and the π-system of the porphyrin. Correlationof one- and two-photon absorption properties of transition metal porphyrins suggests a new and simple approach to improve organic materials for photonic applications. Finally, a series of oligomers consisting of ethynyl-linked azobenzene units was prepared using Pd-catalyzed cross coupling. The linear and nonlinear optical properties of the oligomers were investigated. The molecular second hyperpolarizability, γ, followed the power law γσ n2.12±0.05 (n is number of repeat units) for unusually large molecular lengths. The exceptional exciton delocalization length exceeds 360 conjugated bonds (>49 nm) and is attributed to the rigidity of the conjugated backbone.
3

Degenerate Four Wave Mixing of Short and Ultrashort Light Pulses

McMichael, Ian C. (Ian Charles) 08 1900 (has links)
This dissertation presents experimental and theoretical studies of transient degenerate four wave mixing (DFWM) in organic dyes. Chapter 1 is an introduction to DFWM. Chapter 2 describes DFWM experiments that were performed in the gain medium of a dye laser. Chapter 3 presents the theory of DFWM of short pulses in three level saturable media. Chapter 4 presents DFWM experiments of femtosecond pulses in the saturable absorber of a passively modelocked ring dye laser. Chapter 5 presents the theory of DFWM of ultrashort pulses in resonant media.
4

Conjugação de fase por degenerada de quatro ondas em rubi e GdAlO3:Cr+3 / Phase conjugation by degenerate four-wave mixing in ruby and GdAlO3:Cr+3

Catunda, Tomaz 31 October 1984 (has links)
Estudamos o efeito de Conjugação de Fase por Mistura Degenenerada de Quatro Ondas em Al2O3:Cr+3 (Rubi) e GdAlO3:Cr+3 com um laser de Ar (&#955;=5145 &#197;). Obtivemos eficiência aproximadamente quatro vezes maior no GdAlO3:Cr+3 (onde este trabalho é original) que no Rubi o que nos motivou a investigar as propriedades físicas que são relevantes para o fenômeno nestes sistemas (isto não foi bem compreendido no trabalho anterior em Rubi). Desenvolvemos um método interferométrico muito sensível para medida dos coeficientes não lineares do índice de refração n2 destes materiais (que não eram conhecidos) Com estes valores de n2 calculamos a eficiência de Conjugação de Fase em bom acordo com experiência. / We have studied the effect of Phase Conjugation by Degenerate Four Wave Mixing in Al2O3:Cr+3 (Rubi) and GdAlO3:Cr+3 with an Ar (&#955;=5145 &#197;). We obtained efficiency ?approximately? 4 times greater in GdAlO3:Cr+3 (where this work is original) than in Rubi and this have motivated us to investigate the physical properties that are important to explain this phenomenon in these materials (what wasn\'t well understood in the previous paper on Rubi(10)). We developed an interferometric method very sensitive to measure the nonlinear coeficient of refractive index n2 of these materials (what wasn\'t known). With these values of n2 we calculated the efficiency of the Phase Conjugation in good agreement with the experience.
5

Conjugação de fase por degenerada de quatro ondas em rubi e GdAlO3:Cr+3 / Phase conjugation by degenerate four-wave mixing in ruby and GdAlO3:Cr+3

Tomaz Catunda 31 October 1984 (has links)
Estudamos o efeito de Conjugação de Fase por Mistura Degenenerada de Quatro Ondas em Al2O3:Cr+3 (Rubi) e GdAlO3:Cr+3 com um laser de Ar (&#955;=5145 &#197;). Obtivemos eficiência aproximadamente quatro vezes maior no GdAlO3:Cr+3 (onde este trabalho é original) que no Rubi o que nos motivou a investigar as propriedades físicas que são relevantes para o fenômeno nestes sistemas (isto não foi bem compreendido no trabalho anterior em Rubi). Desenvolvemos um método interferométrico muito sensível para medida dos coeficientes não lineares do índice de refração n2 destes materiais (que não eram conhecidos) Com estes valores de n2 calculamos a eficiência de Conjugação de Fase em bom acordo com experiência. / We have studied the effect of Phase Conjugation by Degenerate Four Wave Mixing in Al2O3:Cr+3 (Rubi) and GdAlO3:Cr+3 with an Ar (&#955;=5145 &#197;). We obtained efficiency ?approximately? 4 times greater in GdAlO3:Cr+3 (where this work is original) than in Rubi and this have motivated us to investigate the physical properties that are important to explain this phenomenon in these materials (what wasn\'t well understood in the previous paper on Rubi(10)). We developed an interferometric method very sensitive to measure the nonlinear coeficient of refractive index n2 of these materials (what wasn\'t known). With these values of n2 we calculated the efficiency of the Phase Conjugation in good agreement with the experience.

Page generated in 0.1078 seconds