• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 11
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intermolecular hydrophosphination of alkynes and dehydrocoupling studies using iron catalysts

King, Andrew January 2018 (has links)
Iron β-diketiminate complexes have great potential as catalysts. Previous work into the coordination chemistry of complexes bearing the β-diketiminate ancillary ligand (Chapter 1) attest to the useful properties of these complexes in catalysis. A handful of literature reports on catalytic systems hint that this could be further extended. Hydrophosphination is a growing field that continues to generate a lot of interest from industry and academia alike. The aims of this project are to investigate hydrophosphination reactions with iron β-diketiminate complexes, to achieve high degrees of regioselectivity from these sterically encumbered complexes and to investigate iron catalysed dehydrocoupling reactions. A combination of synthetic and mechanistic methodologies will be employed in order to achieve definitive insight via NMR spectroscopic analysis, kinetic studies and solid state crystallography. Initial work presented herein (Chapter 2) will focus on the synthesis of iron(II) β-diketiminate complexes. Previously reported literature methods will be explored in order to determine an optimum procedure to use these precatalyst complexes. Initial investigations into hydrophosphination activity of these iron species will then be explored with alkenes. Results of these studies led to serendipitous findings and unexpected results in phosphine dehydrocoupling. The scope of this reactivity was then probed and mechanistic considerations taken into account with findings detailed herein. Radical catalysed reactivity observed will be further discussed. Solvent selectivity will then be discussed with a simple yet highly effective solvent change yielding a complete shift in catalytic activity. Further studies (Chapter 3) highlight the orthogonal reactivity of iron(II) β-diketiminate complexes in hydrophosphination catalysis. Less electronically activated and more atypical substrates have been investigated to determine their activity in hydrophosphination reactions. The synthesis of phosphinoalkenes and phosphinoalkynes for cyclic intramolecular hydrophosphination reactions are detailed along with their catalytic activity. Preliminary mechanistic studies are discussed with radical species again proving crucial to catalytic activity. Selective intermolecular hydrophosphination reactions have been investigated with alkynes. A solvent based switch can be employed wherein the regioselectivity of the reaction is completely altered. Substrate scope, mechanistic considerations and potential future applications are examined in full detail. Dehydrocoupling catalysis can be extended in scope (Chapter 4) from iron catalysed phosphine homocoupling reactions to heterocoupling reactions. Phosphine-silane dehydrocoupling is found to be highly selective for the formation of silaphosphanes, preliminary mechanistic insight and reaction scope is discussed. Analogous amine-silane dehydrocoupling is explored in full. The substrate scope offers insight into reactivity and potential further applications in sequential and tandem catalysis. In depth mechanistic insight is discussed with kinetic analyses. Iron-amido complexes are observed to react in a metathesis mediated cycle via iron hydride species. Finally catalytic alcohol-silane dehydrocoupling is investigated as a synthetic route to protected natural products in organic synthesis. Unsaturated silazanes are potential targets for further dehydrocoupling reactions. Catalytic reactions with pinacolborane led to highly facile desilylation reactions (Chapter 5). Mechanistic considerations hint that the reactions occur via σ-bond metathesis could through iron hydride species. Desilylation activity is then extended to siloxanes and a model developed with potential applications in the depolymerisation of polysilazanes and polysiloxanes.
2

SYNTHESIS AND REACTIVITY OF PHOSPHORUS HETEROCYCLES AND POLYPHOSPHANES

Ekstrom, Zakary Tyler 25 January 2022 (has links)
No description available.
3

Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson's catalyst

Schumacher, C., Crawford, Deborah E., Raguž, B., Glaum, R., James, S.L., Bolm, C., Hernández, J.G. 03 March 2020 (has links)
No / Mechanochemistry enabled the selective synthesis of the recherche´ orange polymorph of Wilkinson’s catalyst [RhCl(PPh3)3]. The mechanochemically prepared Rh-complex catalysed the solvent-free dehydrogenation of Me2NHBH3 in a ball mill. The in situ-generated hydrogen (H2) could be utilised for Rh-catalysed hydrogenation reactions by ball milling. / We thank the RWTH Aachen University for support from the Distinguished Professorship Program funded by the Excellence Initiative of the German federal and state governments, and the EPSRC for funding (EP/L019655/1).
4

Catalytic Main Group Element Bond Formation Reactions Toward the Preparation of Conjugated Materials

Mucha, Neil 01 January 2015 (has links)
Polymers incorporating main group elements offer different and interesting properties compared to their all carbon analogues. For example, π-conjugated polymers incorporating phosphorus in the main chain of the polymer have generated interest due to their unique thermal and electronic properties, which primarily result from delocalization of the phosphorous lone pair within aromatic units. Similarly, interest in polysilanes stems from conductivity resulting from σ electron delocalization, though current methods of preparation for both of these types of materials are lacking. In this dissertation, both early and late transition-metal compounds were used to dehydrocouple phosphine and silane substrates. The use of dehydrocoupling catalysis as a method for the synthesis of main group element-linked polymers was explored utilizing substrates designed to engender solubility in their polymeric products. Progress towards the preparation of silane- and phosphine-based conjugated materials via dehydrocoupling catalysis is reported. Catalytic reactions of bisphosphinite pincer-ligated iridium compounds p-XR(POCOP)IrHCl (POCOP) = 2,6-(R2PO)2C6H3, R = iPr, tBu, X = H, COOMe, H, NMe2with primary and secondary silanes have been performed. Compounds featuring the less sterically demanding iPr-substituted ligands facilitate silane redistribution reactions, but dehydrocoupling catalysis is observed for more encumbered silane substrates or with aggressive removal of H2. The bulkier tBu-substituted compounds are silane dehydrocoupling precatalysts that also undergo competitive redistribution with less hindered substrates. Products generated from reactions utilizing tBu ligated Ir include low molecular weight oligosilanes with varying degrees of redistribution present or disilanes when employing more sterically demanding substrates. The interplay of steric and electronic effects of the POCOP ligand on the silane product distribution will be presented. In previous work by our group, a triamidoamine-supported zirconium catalyst,[κ5-(Me3SiNCH2CH2)2NCH2CH2NSiMe2CH2]Zr, 1 has been shown to be effective in catalyzing the formation of phosphorus–element bonds via dehydrocoupling. Substrates including 2,5-bisphosphinofuran and 1,4-bisphosphinobenzene were dehydrocoupled to yield hyperbranched polyphosphine products. Efforts to characterize these products have been limited due to poor solubility. Rational substrate design incorporating aliphatic sidechains in primary phosphine linker molecules to engender solubility has been accomplished. Treatment of these second generation substrates with 1 or [Cp*2ZrH3]Li, 2 leads to sluggish reactions reaching moderate conversions to diphosphine products. The working hypothesis is that steric congestion during the bond forming step hinders additional bond-formation. Efforts toward the characterization and utilization of these insoluble materials as metal ion scavengers will be presented.
5

Exploring the reactivity of cationic rhodium xantphos complexes with amine-boranes

Johnson, Heather C. January 2015 (has links)
This thesis explores the reactivity of amine-boranes with the {Rh(Xantphos)}+ fragment, with the aim of gaining mechanistic insight into the catalytic dehydropolymerisation of the amine-borane H<sub>3</sub>B∙NMeH<sub>2</sub> to yield the polyaminoborane [H<sub>2</sub>BNMeH]<sub>n</sub>. Chapter 2 describes the synthesis of suitable Rh<sup>III</sup> and Rh<sup>I</sup> Xantphos precursors to be used in this investigation. Moreover, the first example of the dehydrogenative B—B homocoupling of the tertiary amine-borane H<sub>3</sub>B∙NMe<sub>3</sub> to form H<sub>4</sub>B<sub>2</sub>•2NMe<sub>3</sub> is reported. The synthesis of the Rh<sup>I</sup> precatalyst introduced in Chapter 2 entails the hydroboration of tert-butylethylene by H<sub>3</sub>B∙NMe<sub>3</sub>. In Chapter 3, the ability of the {Rh(Xantphos)}+ fragment to mediate this hydroboration in a catalytic manner is explored, and a mechanism is presented in which reductive elimination is proposed to be turnover-limiting. Other alkenes and phosphine-boranes are also trialled to determine the scope of the hydroboration. Chapter 4 investigates the catalytic dehydrocoupling of H<sub>3</sub>B∙NMe<sub>2</sub>H and H<sub>3</sub>B∙NMeH<sub>2</sub> with {Rh(Xantphos)}+ to form the dehydrocoupling products [H<sub>2</sub>BNMe<sub>2</sub>]<sub>2</sub> and [H<sub>2</sub>BNMeH]<sub>n</sub>, respectively, and the dehydrocoupling mechanisms are shown to be similar. Both involve an induction period in which the active catalyst is formed (thought to involve N—H activation), and saturation kinetics operate during the productive phase of catalysis. H<sub>2</sub> is shown to inhibit the dehydrocoupling, and lead to production of shorter chain [H<sub>2</sub>BNMeH]<sub>n</sub>. Conversely, using THF as the dehydropolymerisation solvent instead of C<sub>6</sub>H<sub>5</sub>F results in longer chain [H<sub>2</sub>BNMeH]<sub>n</sub>. Finally, Chapter 5 presents new dicationic {Rh(Xantphos)}-based dimers, the formation of which involves loss of a phenyl group from the Xantphos ligands by P—C activation. The dimers are produced by routes involving either dehydrogenative homocoupling of H<sub>3</sub>B∙NMe<sub>3</sub>, or dehydrocoupling of H<sub>3</sub>B∙NMe<sub>2</sub>H. One of these dimers was tested as a catalyst for the dehydrocoupling of H<sub>3</sub>B∙NMe<sub>2</sub>H, and the reaction kinetics appear closely related those obtained using {Rh(Xantphos)}+, suggesting that the active catalysts in each system may be related.
6

Cooperative (De-)Hydrogenation of Small Molecules

Glüer, Arne 11 December 2018 (has links)
No description available.
7

Metal Catalyzed Group 14 And 15 Bond Forming Reactions: Heterodehydrocoupling And Hydrophosphination

Cibuzar, Michael 01 January 2019 (has links)
Investigation of catalytic main-group bond forming reactions is the basis of this dissertation. Coupling of group 14 and 15 elements by several different methods has been achieved. The influence of Si–N heterodehydrocoupling on the promotion of α-silylene elimination was realized. Efficient Si–N heterodehydrocoupling by a simple, earth abundant lanthanide catalyst was demonstrated. Significant advances in hydrophosphination by commercially available catalysts was achieved by photo-activation of a precious metal catalyst. Exploration of (N3N)ZrNMe2 (N3N = N(CH2CH2NSiMe3)33–) as a catalyst for the cross-dehydrocoupling or heterodehydrocoupling of silanes and amines suggested silylene reactivity. Further studies of the catalysis and stoichiometric modeling reactions hint at α-silylene elimination as the pivotal mechanistic step, which expands the 3p elements known to engage in this catalysis and provides a new strategy for the catalytic generation of low-valent fragments. In addition, silane dehydrocoupling by group 1 and 2 metal bis(trimethylsilyl)amide complexes was investigated. Catalytic silane redistribution was observed, which was previously unknown for d0 metal catalysts. La[N(SiMe3)2]3THF2 is an effective pre-catalyst for the heterodehydrocoupling of silanes and amines. Coupling of primary and secondary amines with aryl silanes was achieved with a loading of 0.8 mol % of La[N(SiMe3)2]3THF2. With primary amines, generation of tertiary and sometimes quaternary silamines was facile, often requiring only a few hours to reach completion, including new silamines Ph3Si(nPrNH) and Ph3Si(iPrNH). Secondary amines were also available for heterodehydrocoupling, though they generally required longer reaction times and, in some instances, higher reaction temperatures. By utilizing a diamine, dehydropolymerization was achieved. The resulting polymer was studied by MS and TGA. This work expands upon the utility of f-block complexes in heterodehydrocoupling catalysis. Stoichiometric and catalytic P–E bond forming reactions were explored with ruthenium complexes. Hydrophosphination of primary phosphines and activated alkenes was achieved with 0.1 mol % bis(cyclopentadienylruthenium dicarbonyl) dimer, [CpRu(CO)2]2. Photo-activation of [CpRu(CO)2]2 was achieved with a commercially available UV-A 9W lamp. Preliminary results indicate that secondary phosphines as well as internal alkynes may be viable substrates with this catalyst. Attempts to synthesize ruthenium phosphinidene complexes for stoichiometric P–E formation have been met with synthetic challenges. Ongoing efforts to synthesize a ruthenium phosphinidene are discussed. The work in this dissertation has expanded the utility of metal-catalyzed main-group bond forming reactions. A potential avenue for catalytic generation low-valent silicon fragments has been discovered. Rapid Si–N heterodehydrocoupling by an easily obtained catalyst has been demonstrated. Hydrophosphination with primary phosphines has been achieved with a commercially available photocatalyst catalyst, requiring only low intensity UV light.
8

Cationic rhodium complexes with chelating phosphine and phosphine alkene ligands. Application in dehydrogenation and dehydrocoupling reactions

Dallanegra, Romaeo January 2011 (has links)
A series of cationic Rh(I) diphosphine and phosphine-alkene complexes have been isolated and fully characterised. The reactivity of these species towards hydrogenation, dehydrogenation and dehydrocoupling reactions has been investigated. The use of potentially hemilabile ligands DPEphos and XANTphos in the intramolecular dehydrogenation chemistry of tricyclopentylphosphine is reported. The comparison in reactivity of these isolated diphosphine phosphine-alkene complexes towards hydrogenation and with acetonitrile is discussed along with their ability to dehydrocouple secondary silane, Ph₂SiH₂, and amine-borane H₃B·NMe₂H. The acceptorless dehydrogenation of a tethered cyclopentane with cationic Rh(I) diphosphine complexes has also been extended to include thioethers. Isolated cationic Rh(I) phosphine-alkene complexes with labile fluorobenzene ligands are found to act as a source of the reactive 12-electron [Rh{PR₂(ƞ²-C₅H₇)}]+ (R = cyclopentyl (Cyp)/ iPr) fragment in solution and can coordinate two amine-borane ligands (either H₃B·NMe₃, H₃B·NMe₂H or H₃B·NMeH₂) in a novel and unique bis-σ-binding mode. The catalytic activity of some of these isolated complexes in the dehydrocoupling of H₃B·NMe₂H and H₃B·NMeH₂ has been determined. With a view to further understanding the mechanism of catalytic transition metal assisted amine-borane dehydrogenation and dehydrocoupling, known B-N intermediates H₃B·NMe₂BH₂·NMe₂H and [H₂B·NMeH]₃ were also coordinated to the [Rh{PCyp₂(ƞ²-C₅H₇)}]+ fragment and investigated with regard to their role in the catalytic cycle. Structure activity relationships determined from stoichiometric reactions of cationic Rh(I) diphosphine fluorobenzene complexes with amine-boranes enabled the design of a highly efficient homogeneous catalyst capable of dehydrogenating H₃B·NMe₂H to [H₂BNMe₂]₂ at 0.2 mol% loading in 30 minutes at 298 K. Rapid dehydrogenation and dehydrocoupling of H₃B·NMeH₂ to form high molecular weight poly(N-methylaminoborane) with a low PDI has also been achieved. Investigations using model aminoborane H₂B=NiPr₂ and intermediate B-N species H₃B·NMe₂BH₂·NMe₂H and [H₂B·NMeH]₃ has helped establish an overall mechanistic rationale for this process.
9

Chimie de coordination du baryum : synthèse et applications en catalyse / Barium coordination chemistry : synthesis and applications in catalysis

Le Coz, Erwann 02 October 2019 (has links)
La chimie des métaux alcalino-terreux lourds (calcium, strontium et baryum) a longtemps été décrite comme difficile et imprévisible contrairement à la chimie du magnésium, leur plus léger congénère. Cependant, au cours des dernières décennies, de nombreux complexes basés sur ce type de métaux ont émergés en tant que précatalyseurs efficaces pour un grand nombre de transformations organiques (polymérisation, hydroélémentation, couplage déshydrogénants, etc..). Cette thèse décrit la synthèse et l’étude (expérimentale et théorique) de nouveaux complexes de baryum de basse coordinance basée sur l’utilisation de ligands alcoolates pauvres en électrons. L’étude de ces composés a permis d’améliorer notre compréhension des différents phénomènes nécessaires à la stabilisation de tels composés. Dans un second temps, deux nouveaux systèmes de couplages déshydrogénants BO‒H/H‒Si et SiO‒H/H‒Si ont été développés et étudiés. Ces systèmes ont permis la formation catalytique de borasiloxanes et de siloxanes dissymétriques de façon sélective. Enfin, ces travaux montrent la synthèse et l’utilisation de nouveaux ligands ancillaires pour la formation de complexes hétéroleptiques de baryum stables. Ces derniers ont démontré une forte activité catalytique en hydrophosphination intermoléculaire avec des TOF pouvant atteindre 200 h-1 pour l’hydrophosphination du styrène par la HPPh2. / Heavy alkaline earth metals chemistry (calcium, strontium and barium) has been described as difficult and unpredictable for a long time, unlike the chemistry of magnesium, their lightest congener. However, in the last decades, many complexes based heavy alkaline earth metals have emerged as effective precatalysts for many applications and organic transformations (polymerization, hydroelementation, dehydrogenating coupling, etc.). This thesis describes the synthesis and study (experimental and theoretical) of new low-coordinate barium complexes based on electron-poor alkoxide ligands. The study of these compounds has improved our understanding of the different phenomena required to stabilize such compounds. Then, two new dehydrocoupling systems BO-H/H-Si and SiO-H/H-Si were developed and studied. These systems have allowed the catalytic formation of borasiloxanes and asymmetric siloxanes in a selective manner. Finally, this work shows the synthesis and use of new ancillary ligands for the formation of stable heteroleptic barium complexes. The latter have demonstrated strong catalytic activity in hydrophosphination with TOFs up to 200 h-1 for the intermolecular hydrophosphination of styrene by HPPh2.
10

Complexes de baryum et autres métaux divalents du bloc principal pour la catalyse homogène de couplages déshydrogénants / Alkaline-earth-catalysed cross-dehydrocoupling of amines and hydrosilanes

Bellini, Clément 23 September 2016 (has links)
Les complexes organométalliques de métaux alcalino-terreux lourds (Ca, Sr, Ba), ont émergé ces deux dernières décennies en tant que précatalyseurs efficaces, biocompatibles et disponibles à bas coûts pour des réactions d'hydroélémention d'oléfine ou de polymérisation de cycloesters. Cette thèse décrit la synthèse de complexes de métaux du groupe 2 (Ca, Sr, Ba) et leur utilisation en catalyse de couplage déshydrogénant N-H/H-Si. Le précatalyseur Ba[CH(SiMe3)2]2(THF)3 s'est montré le plus efficace pour le couplage d'amines avec des hydrosilanes, présentant une activité catalytique parmi les plus élevées à ce jour (TOF jusqu' 3600 h-1 ; TON jusqu'à 396). La combinaison de résultats théoriques (calculs DFT en collaboration avec le Dr. Sven Tobisch) et expérimentaux ont permis de comprendre les mécanismes opératoires de ces réactions. Le développement de procédés de synthèse pour la production d'oligo- ou polysilazanes a été mené par l'intermédiaire de ces couplages déshydrogénants. Des structures macromoléculaires linéaires ou cycliques de type polycarbosilazane, présentant de nombreuses applications en chimie des matériaux, ont notamment été synthétisées par polycondensation catalysée par Ba[CH(SiMe3)2]2(THF)3. Dans un dernier temps, la synthèse de complexes innovants de métaux des groupes 12 (Zn, Cd, Hg) et 14 (Pb) a été effectuée en collaboration avec l'équipe du Pr. Silvestru de l'université de Babeş-Bolyai (Cluj-Napoca, Roumanie). / In the past two decades, heavier alkaline-earth (Ca, Sr, Ba) complexes have emerged as highly efficient and biocompatible precatalyst for hydroelementation or polymerisation reactions. This PhD thesis describes the synthesis and characterisation of heavier alkaline-earth complexes and their applications as precatalyst for cross-dehydrocoupling of hydrosilanes and amines. The homoleptic precatalyst Ba[CH(SiMe₃)₂]₂(THF)3 displayed high catalytic activity (TOF up to 3600 h⁻¹ ; TON up to 396), with excellent chemoselectivity in reaction of (di)amines with (di)hydrosilanes. Combination of experimental and DFT investigations (collaboration with Dr. Sven Tobisch) revealed the reactions proceed by nucleophilic attack of a metal amide at the incoming silane and subsequent turnover-limiting hydrogen transfer to the metal center. Development of synthesis of oligo- and polysilazanes was performed using our best barium precatalysts. Cyclic or linear polycarbosilazanes (Mw up to 10 000 g.mol⁻¹) were also produced by fast and controlled barium-catalyzed N-H/H-Si polycondensation. In a collaboration with Prof. Silvestru from Babeş-Bolyai University (Cluj-Napoca, Roumanie), synthesis of interesting zinc, cadmium, mercury and lead complexes were achieved in complement of this work.

Page generated in 0.0555 seconds