• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 42
  • 16
  • 10
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 459
  • 459
  • 419
  • 57
  • 57
  • 56
  • 39
  • 33
  • 32
  • 32
  • 31
  • 28
  • 28
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

The impact of physical and biological factors on intracellular uptake, trafficking and gene transfection after ultrasound exposure

Liu, Ying 23 March 2011 (has links)
We used megahertz pulsed ultrasound and studied gene transfection with a human prostate cancer cell line. We first studied the compromise of cell viability and uptake efficiency and found out that increasing sonication temperature or changing US contrast agents could improve drug/gene delivery mediated by US exposure. We also found that accounting for cell debris after sonication was important to correctly determine cell viability. Next, we verified the capability of US to deliver DNA into the cell nuclei, which is necessary for successful gene transfection. Under the optimal sonication conditions, ~ 30% of cells showed DNA uptake right after US exposure and most had a portion of DNA already localized in the cell nuclei. The maximum transfection efficiency was ~ 12% at 8 h post US exposure. From the DNA perspective, ~ 30% of DNA was localized in the cell nuclei immediately after US exposure and ~ 30% was in the autophagosomes/ autophagolysosomes with the rest ¡°free¡± in the cytoplasm. At later time up to 24 h, DNA continued to be distributed ~ 30% in the nuclei and most or all of the rest in autophagosomes/autophagolysosomes. Our results showed that US was able to deliver DNA into the cell nuclei shortly after the treatment and that the rest of DNA was mostly cleared by autophagosomes/autophagolysosomes. To further increase transfection efficiency, we then studied the differences between live cells with DNA uptake and those with successful gene transfection post US exposure using cell sorting, cell cycle and microarray analysis. Cells with gene transfection were found to accumulate at the G1 phase of cell cycle and associate with the up-regulation of 32 genes (e.g., GADD45¦Á) and the down-regulation of 46 genes (e.g., TOP2¦Á). Drugs that regulate the expression levels of GADD45¦Á and TOP2¦Á were found to further enhance the transfection mediated by US. A maximun increase of ~ 2 fold in transfection efficiency was observed when cells were sonicated with 0.6 mg/mL ethyl methanesulfonate to up-regulate GADD45¦Á. These results suggestted that using drugs that regulate certain introcellular processes could further enhance US-mediated gene transfection. Over a broad range of US conditions, the integrity of three common gene delivery vectors, plasmid DNA, siRNA and adeno-associated virus, were not affected by US exposure. This thesis verified that US was able to delivery DNA into the cell nuclei to facilitate rapid gene transfection, and provided a proof of princible that by modulating certain intracellular processes, the efficiency of US-mediated gene transfection could be further increased. US could potentially be a safe and efficient method for gene therapy.
262

Nanoparticle use in the modulation of transplant rejection in a murine model

Kassis, Elias Noah 10 September 2010 (has links)
Solid organ transplant has emerged over the last half century as an important treatment for solid organ failure. Management has matured dramatically over the past two decades with improvements in acute rejection, but long-term graft survival has improved very little and current treatment is limited by the side-effects and toxicities of immunosuppressive medications. Nanoparticle delivery of therapeutics, improving transport characteristics and decreasing systemic and local toxicity has emerged as a dynamic treatment modality, but little work has been done using nanoparticles in transplantation. Our research examined the use of CD4-targeted nanoparticles encapsulated with mycophenolic acid (MPA), a commonly used immunosuppressant in organ transplantation. This work is the first to examine antigen-specific targeting of nanoparticles in any transplant model. MPA-loaded particles show a slow and continuous release profile and biodistribution suggested retention in the spleen. Targeting of nanoparticles to CD4 T cells was suggested using ex vivo and in vitro flow cytometry. In the fully allogeneic MHCII mismatch BALB/C to C57BL/6 mice we found improved graft survival in the non-targeted MPA group and even greater graft survival in the CD4-targeted group. Targeted and non-targeted particle groups showed equal delay in rejection in the less immunogenic single MHC mismatch B6.H-2bm12 to C57BL/6 model that we showed to be CD4 dependent. In both models, graft survival times were increased over free drug and controls with roughly one thousand fold lower dose of drug in the nanoparticles as compared with free MPA. Consistent with these findings were decreased proliferation with targeted and non-targeted MPA-nanoparticles using in vitro and ex vivo mixed lymphocyte reactions. We postulated that the similar rejection times in targeted and non-targeted groups was due to dendritic cell (DC) involvement and we found active uptake of nanoparticles in DCs, a decrease in inflammatory cytokine production and a decrease in treated DCs ability to stimulate T cells via mixed lymphocyte reactions. Furthermore we found a possible mechanism in the DC interaction with T cells through the upregulation of the inhibiting co-stimulatory molecules B7-DC and B7-H1 on DCs treated with MPA-nanoparticles. We also found possible upregulation of CD4+CD25+ Foxp3 expressing Tregs which may serve to increase graft acceptance. These results explore the involvement of dendritic cells in the process of nanoparticle-induced graft acceptance and suggest the feasibility of using nanoparticle drug vectors in clinical transplant.
263

Solubilization and release studies of small molecules in polymeric micelles /

Teng, Yue, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 166-173). Available also in a digital version from Dissertation Abstracts.
264

PLGA-based nanoparticles for targeting of dendritic cells in cancer immunotherapy and immunomonitoring

Ghotbi, Zahra. January 2010 (has links)
Thesis (M.Sc.)--University of Alberta, 2010. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Pharmaceutical Sciences. Title from pdf file main screen (viewed on February 17, 2010). Includes bibliographical references.
265

Quantification and control of ultrasound-mediated cell death modes

Hutcheson, Joshua Daniel. January 2008 (has links)
Thesis (M. S.)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Prausnitz, Mark; Committee Member: Bommarius, Andreas; Committee Member: Jones, Christopher; Committee Member: Sambanis, Athanassios. Part of the SMARTech Electronic Thesis and Dissertation Collection.
266

In vivo and ex vivo studies of intraocular tamponade agents and their clinical relevance in intraocular drug delivery

Ma, Da, 马达 January 2010 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy
267

Spray freezing into liquid to produce protein microparticles

Yu, Zhongshui 14 May 2015 (has links)
Recent advances in molecular biology have led to an explosive growth in the number of peptide and protein drugs derived from both recombinant technology and conventional peptide drug design. However, development of peptide and protein therapeutics has proven to be very challenging because of inadequate physical and chemical stability. In recent years, particle engineering processes have become promising approaches for enhancement of protein stability as well as provide options for more delivery routes. In this research program, spray freezing into liquid (SFL) process was developed and optimized in order to achieve broad platform and application in protein and peptide drug delivery systems. The overall goal of this research was to produce stabilized protein and peptide microparticles for various drug delivery systems by using SFL particle engineering technology. Firstly, the use of the SFL process to produce peptide microparticles was investigated. Insulin microparticles produced by the SFL process were highly porous, low tap density and narrow particle size distribution. The influence of the SFL process parameters and excipients on the physicochemical properties of peptide microparticles was determined and compared to the widely used particle formation technique--freeze-drying. The SFL process was further used to produce protein microparticles. In the study, bovine serum albumin (BSA), a medium sized protein, was used as a model drug. The influence of SFL process parameters and excipients on the stability of BSA was studied. Very low monomer loss of BSA was found in this study even though the specific surface area of the powder was very high. Results also demonstrated that the SFL process had minimal influence on protein structure. The SFL process was further investigated by comparing the SFL process to spray freeze drying process (SFD), which is a relatively new process to produce protein and peptide microparticles. The influence of atomization, freezing and drying on the stability of lysozyme was investigated for both the SFL and SFD process. This study tested the hypothesis that the SFL process is a better process than SFD process because of avoiding air-liquid interface and minimum interfacial surface absorption of protein in SFL process. The particle size of protein and peptide microparticles produced by SFL process was further reduced to nanoparticles by sonication or homogenization processes in organic solvent. In this study, the influence of process parameters on the particle size and enzyme activity of lysozyme was investigated. The results showed that sonication or homogenization did not influence the enzyme activity of lysozyme. Lastly, insulin and insulin/dextran microparticles produced by SFL the process was encapsulated into polymer microspheres for oral delivery. Complexation and polymer composition was studied in order to optimize release and stability of insulin. Insulin nanoparticles in microspheres minimized the release of insulin in acid with high drug loading compared to other studies. The stability of insulin was decreased by complexation to dextran sulfate. The results of this research demonstrated that the SFL process offers a highly effective approach to produce protein and peptide powders suitable for different drug delivery systems. The microparticles produced by the SFL process had desirable characteristics such as narrow particle size distribution and high porosity. The stability of protein and peptide was well maintained through the SFL process. Therefore, SFL process is an effective particle engineering process for protein and peptide pharmaceuticals. / text
268

Physical and chemical properties of acrylic polymers influencing physical aging

Kucera, Shawn Anthony, 1974- 29 August 2008 (has links)
The influence of water soluble and insoluble stabilizing excipients on the physical stability of coated dosage forms was investigated in this study. The effect of the excipients on the thermal and physico-mechanical properties, and water vapor permeability of free films was studied, as was the influence of these excipients on the physical stability and release kinetics of coated pellets. The effect of water-soluble proteins, bovine serum albumin (BSA) and Type B gelatin, on the physical aging of Eudragit[trademark] RS/RL 30 D films was investigated. It was found that ionic interactions occurred above the isoelectric point of BSA and caused unstable films which showed accelerated decreases in drug release rate. The adjustment of the pH of the dispersion below the isoelectric point of BSA resulted in electrostatic repulsive charges that stabilized the drug release rate from coated dosage forms at both ambient and accelerated conditions. The addition of gelatin to the coating dispersion increased the drug release rate due to the formation of gel-domains through which the drug was able to easily diffuse. The influence of silicon dioxide on the stability of Eudragit[trademark] RS/RL 30 D films was investigated. Colloidal grades showed enhanced incorporation in the acrylic matrix; however, unstable films were formed. The addition of silicon dioxide with a larger particle size increased the permeability of the film and stabilization in drug release rate was attributed to constant water vapor permeability values of free films. The influence of ethylcellulose on the physical aging of Eudragit[trademark] NE 30 D coated pellets was studied. The two polymers were found to be substantially immiscible and the drug release rate of coated pellets was constant at both ambient and accelerated conditions which correlated to stabilizations in both the physico-mechanical properties and water vapor permeability of free films. Blending both Eudragit[trademark] NE 30 D and RS 30 D resulted in the formation of coherent films without the need of plasticizer. The two polymers were found to be miscible and both films and coated dosage forms were stable when stored below the glass transition temperature of the polymer blend. When films were stored above this temperature, instabilities occurred as a result of the further coalescence and densification of the polymer blend.
269

Development of graphene oxide-based hydrogel biocomposite with anti-diabetic activity.

Owonubi, Shesan John. January 2015 (has links)
M. Tech. Polymer Technology / Type II diabetes afflicts more than 300 million people worldwide. The pursuit for improved targeted drug delivery systems has led to the development of highly improved biomaterials with enhanced biocompatibility and biodegradability properties. Hydrogels are of particular interest for drug delivery applications due to their ability to address targeted drug delivery, in addition to their good biocompatibility, tunable network structure needed to control the diffusion of drugs and their ability to imbibe drugs within their mesh network structure. Hydrogels are promising candidates for advanced anti-diabetic applications. They were prepared by application of free-radical polymerization of acrylamide (AAm) in the presence of partially and thermally reduced graphene oxide (rGO) and wheat protein isolate (WPI). The incorporation of two (or more) different drugs onto a single delivery vehicle and the realization of combination therapy is a challenging, just as it is an important aspect for smart drug delivery. Thus, the development of dual drug delivery systems that can control the release behaviours of each drug is highly pertinent. This project aims to develop a dual drug delivery system with smart polymers, exploiting stimuli responses to be utilized as a carrier vehicle to aid in proffering a cure for diabetes. Also, it aims at proffering a solution to the lingering issue of combination therapy; by comparing the effect of the test drugs individually and in combination as anti-diabetic drugs.
270

Aloe leaf materials as excipients for controlled release multiple unit drug delivery systems

Jambwa, Nyasha Tafara. January 2011 (has links)
M. Tech. Pharmaceutical Sciences. / Investigates the potential of A. ferox and A. vera gel and whole leaf extract materials alone or in combination with Carbopol® 971P NF and HPMC as excipients in a multi-unit controlled release matrix type system.

Page generated in 0.0594 seconds