Spelling suggestions: "subject:"gene transfection"" "subject:"ene transfection""
1 |
Expression of recombinant rabbit caseinsBurdon, T. G. January 1988 (has links)
No description available.
|
2 |
The impact of physical and biological factors on intracellular uptake, trafficking and gene transfection after ultrasound exposureLiu, Ying 23 March 2011 (has links)
We used megahertz pulsed ultrasound and studied gene transfection with a human prostate cancer cell line. We first studied the compromise of cell viability and uptake efficiency and found out that increasing sonication temperature or changing US contrast agents could improve drug/gene delivery mediated by US exposure. We also found that accounting for cell debris after sonication was important to correctly determine cell viability.
Next, we verified the capability of US to deliver DNA into the cell nuclei, which is necessary for successful gene transfection. Under the optimal sonication conditions, ~ 30% of cells showed DNA uptake right after US exposure and most had a portion of DNA already localized in the cell nuclei. The maximum transfection efficiency was ~ 12% at 8 h post US exposure. From the DNA perspective, ~ 30% of DNA was localized in the cell nuclei immediately after US exposure and ~ 30% was in the autophagosomes/ autophagolysosomes with the rest ¡°free¡± in the cytoplasm. At later time up to 24 h, DNA continued to be distributed ~ 30% in the nuclei and most or all of the rest in autophagosomes/autophagolysosomes. Our results showed that US was able to deliver DNA into the cell nuclei shortly after the treatment and that the rest of DNA was mostly cleared by autophagosomes/autophagolysosomes.
To further increase transfection efficiency, we then studied the differences between live cells with DNA uptake and those with successful gene transfection post US exposure using cell sorting, cell cycle and microarray analysis. Cells with gene transfection were found to accumulate at the G1 phase of cell cycle and associate with the up-regulation of 32 genes (e.g., GADD45¦Á) and the down-regulation of 46 genes (e.g., TOP2¦Á). Drugs that regulate the expression levels of GADD45¦Á and TOP2¦Á were found to further enhance the transfection mediated by US. A maximun increase of ~ 2 fold in transfection efficiency was observed when cells were sonicated with 0.6 mg/mL ethyl methanesulfonate to up-regulate GADD45¦Á. These results suggestted that using drugs that regulate certain introcellular processes could further enhance US-mediated gene transfection.
Over a broad range of US conditions, the integrity of three common gene delivery vectors, plasmid DNA, siRNA and adeno-associated virus, were not affected by US exposure. This thesis verified that US was able to delivery DNA into the cell nuclei to facilitate rapid gene transfection, and provided a proof of princible that by modulating certain intracellular processes, the efficiency of US-mediated gene transfection could be further increased. US could potentially be a safe and efficient method for gene therapy.
|
3 |
Design, Synthesis, Aggregation And Gene Transfection Properties Of Novel Gemini Cationic Lipids And LipopolymersBajaj, Avinash 12 1900 (has links)
The thesis entitled “Design, Synthesis, Aggregation and Gene Transfection Properties of Novel Gemini Cationic Lipids and Lipopolymers” elucidates the design, synthesis, aggregation and gene transfection properties of novel gemini cationic lipids based on pseudoglyceryl, aromatic and cholesterol/thiocholesterol backbone, and PEI-cholesterol based lipopolymers . The work has been divided into five chapters.
Chapter 1: Introduction to Gene Delivery
This chapter presents an overview of the general area of gene delivery and also gives a comprehensive account of the research towards the development of novel cationic lipids and PEI derived polymers. Utilization of these non-viral vectors for gene delivery and their aggregation studies has also been reviewed.
Chapter 2 deals with the Design, Synthesis, Membrane-Forming and Gene Transfection Properties of Pseudoglyceryl Gemini Lipids and has been divided into four parts.
Part 2A: Synthesis of Pseudoglyceryl Gemini Lipids Possessing Polymethylene and Oxyethylene Spacers
We have synthesized pseudoglyceryl gemini cationic lipids possessing polymethylene [-(CH2)m-] or oxyethylene [-CH2-(CH2-O-CH2)m-CH2-] spacers between the cationic ammonium headgroups. We have varied the length and nature of the spacer between the headgroups, from hydrophobic polymethylene [-(CH2)m-] to hydrophilic oxyethylene [-CH2-(CH2-O-CH2)m-CH2-] units (Figure 1). In these two series, we have also varied the hydrocarbon chain lengths from tetradecyl (n-C14H29) to hexadecyl (nC16H33) chains. Ether functionality has been introduced between the pseudoglyceryl backbone and the hydrocarbon chains.
Figure 1(Refer PDF File)
Part 2B: Thermotropic and Hydration Studies of Membranes Formed from Pseudoglyceryl Gemini Lipids Possessing Polymethylene spacers
In this part, the aggregation, thermotropic and hydration properties of pseudoglyceryl gemini lipids possessing polymethylene [-(CH2)m-] spacers (Figure 1) have been discussed using transmission electron microscopy (TEM), high sensitivity differential scanning calorimetry (DSC) and Paldan fluorescence studies. Electron microscopic studies revealed the vesicular nature of all the lipid aggregates. Thermotropic studies showed that the incorporation of a -(CH2)3- (lipid (16)2-3-(16)2) spacer between cationic ammonium headgroups dramatically increased the phase transition temperature (Tm) for gemini lipid aggregates irrespective of the hydrocarbon chain lengths. Further increase in the number of polymethylene units brought about decreases in the Tm. Hydration studies indicate that gemini lipid aggregates bearing hexadecyl (n-C16H33) chains sense greater hydration at membrane interfaces and among them, aggregates of lipid (16)2-12-(16)2 were found to be most hydrated in the gel state.
Part 2C: Membrane-Forming Properties of Pseudoglyceryl Gemini Lipids Possessing Oxyethylene Spacers
Here, we report the membrane-forming properties of glycerol backbone based gemini cationic lipids with two pairs of hexadecyl (n-C16H33) chains and with a hydrophilic, flexible oxyethylene [-CH2-(CH2-O-CH2)m-CH2-] spacer of variable length and hydration properties between headgroups (Figure 1). Their membrane-forming properties have been studied by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, X-Ray diffraction (XRD), differential scanning calorimetry (DSC), Paldan fluorescence studies. The aggregates of lipid (16)2-1ox-(16)2 possess the highest phase transition temperature (Tm), lowest zeta potential and are highly hydrated, whereas that of gemini lipid (16)2-5ox-(16)2 aggregates are smallest in size, have highest zeta potential and greater bilayer width in the series examined, but possess comparable Tm as that of monomeric lipid (16)2.
Part 2D: Gene Transfection Properties of Pseudoglyceryl Gemini Lipids Possessing Polymethylene and Oxyethylene Spacers
We undertook a chemical-biology investigation on gene delivery efficacies of pseudoglyceryl gemini lipids (Figure 1). These gemini lipid formulations showed a significant enhancement in the gene transfection activities as compared to that of Lipofectin, which is a monomeric, structurally related to the present set of gemini lipids and commercially available reagent based on 1:1(w/w) ratio of DOTMA:DOPE formulation. The transfection efficacies depend on the hydrocarbon chains lengths and the spacer between the cationic ammonium headgroups as shown in Figure 2. The present set of gemini lipids were found to be serum compatible and even the presence of serum caused enhancement of the gene transfection activities of some of the lipid formulations. Lipid (16)2-3ox-(16)2/DOPE formulation was able to transfect nearly 35% of the cells in 50% FBS conditions. The simplicity of the use of pseudoglyceryl backbone, their high chemostability and shelf-life make these formulations particularly attractive.
Figure 2(Refer PDF File)
Chapter 3 deals with Design, Synthesis, Membrane-Forming and Gene Transfection Properties of Cationic Gemini Lipids based on Aromatic Backbone and have been divided into four parts.
Part 3A: Synthesis of Gemini Lipids Possessing Aromatic backbone between the Hydrocarbon chains and the Cationic Headgroup
In this chapter, we report the synthesis of new gemini cationic lipids based on an aromatic backbone that differ in the hydrocarbon chain lengths. We have also varied the length and nature of the spacer segment from hydrophobic polymethylene [-(CH2)m-] to hydrophilic oxyethylene [-CH2-(CH2-O-CH2)m-CH2-] units between the cationic headgroups .(Fig3)
Figure 3(Refer PDF FILE)
Part 3B: Membrane-Forming Properties of Aromatic derived Gemini Lipids Possessing Polymethylene Spacers
The membrane-forming properties of lipids (12)2Bz and (12)2Bz-(CH2)m-Bz(12)2 (Figure 3) have been studied in detail by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), high sensitivity differential scanning calorimetry (DSC), Paldan fluorescence studies and UV-vis absorption spectroscopy. The vesicle sizes, morphologies and thermotropic phase transition properties of the lipid aggregates depend on the length of the spacer chain. Paldan fluorescence studies indicate that the gemini lipid aggregates are less hydrated as compared to that of their monomeric counterpart in their solid-gel state. In contrast in their fluid liquid-crystalline phase, the hydration was found to depend strongly on the length of the spacer. UV-vis absorption studies suggest an H-type aggregate formation in the gemini lipid membranes in the gel states. In fluid state of the lipid membranes, H-aggregate formation was found to be enhanced depending on the length of the spacer.
Part 3C: Gene Transfection Properties of Aromatic derived Gemini Lipids Possessing Polymethylene Spacers
Gene transfection properties of novel aromatic derived gemini possessing polymethylene [-(CH2)m-] spacers and three monomeric cationic lipids (Figure 3) that differ in the hydrocarbon chain lengths have been reported in this chapter. We investigated their gene transfection properties in detail in HeLa cells in the absence and presence of serum conditions. The lipids bearing n-C14H29 hydrocarbon chain lengths have been found to be the best transfecting agents as compared to their analogues with n-C12H25 and n-C16H33 hydrocarbon chains (Figure 4). Formulation of lipid (14)2Bz-5-Bz(14)2, possessing tetradecyl hydrocarbon chains and pentamethylene [-(CH2)5-] spacer showed highest gene transfection efficacy in this series. Lipid (14)2Bz-5-Bz(14)2 formulation is also able to deliver genes in the presence of high percentages of serum.
Figure 4(Refer PDF File)
Part 3D: Gene Transfection Properties of Aromatic derived Gemini Lipids Possessing Oxyethylene Spacers
In this part, the transfection properties of six novel gemini cationic lipids based on aromatic backbone possessing n-C14H29 or n-C16H33 hydrocarbon chains (Figure 3) have been reported. We have varied the length of oxyethylene type spacers [(-CH2-CH2-O-CH2-CH2-)m] between the headgroups, where m varies from 1 to 3. Transfection studies showed that among lipids bearing n-C14H29 chains, transfection efficacies decrease with increase in the length of the spacer, whereas in case of lipids bearing n-C16H33 chains, transfection efficacies increase with increase in the length of the spacer. Lipid ((16)2Bz-3ox-Bz(16)2) bearing n-C16H33 hydrocarbon chains with [-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2)-] spacer was found to be highly serum compatible even in the presence of 50% serum conditions.
Chapter 4 deals with the Design, Synthesis and Gene Transfection Properties of Gemini Cationic Lipids based on Cholesterol/Thiocholesterol backbone and have been divided into three parts.
Part 4A: Design, Synthesis and Gene Transfection Properties of Cholesterol based Gemini Cationic Lipids Possessing Polymethylene Spacers
Here we represent the synthesis and gene transfection properties of five cholesterol based gemini cationic lipids, which differ in the length of the polymethylene [-(CH2)m-] spacer between cationic ammonium headgroups (Figure 5).
Transfection studies showed that with the increase in spacer chain length from propanediyl [-(CH2)3-] to pentanediyl [-(CH2)5-], transfection efficiency increased both in the absence and presence of serum (Figure 6). However, with further increase in the length from pentanediyl [-(CH2)5-] to dodecanediyl [-(CH2)12-] spacer transfection efficiency decreases. Transfection efficiencies of all the gemini lipids except lipid chol-3-chol were maintained even when the serum was present during the transfection conditions as compared to the monomeric lipid M, with which a dramatic decrease in transfection efficiency was observed(figure6)
Figure 5 and 6(Refer PDF File) .
Part 4B: Synthesis and Gene Transfection Properties of Cholesterol based Gemini Cationic Lipids Possessing Oxyethylene type Spacers
Four novel cholesterol based gemini cationic lipids differing in the length of oxyethylene [(-CH2-CH2-O-CH2-CH2-)m] type spacers between each ammonium headgroups have been synthesized (Figure 7) and studied for gene transfection properties.
All the cholesterol based gemini lipids induced better transfection activity than their monomeric counterpart M. Major characteristic feature of these oxyethylene spacer based cholesterol gemini lipids was that 10% serum conditions does not inhibit the transfection activity of these gemini lipids, whereas the transfection activity of their monomeric counterpart decreased drastically in the presence of serum. One of cholesterol based gemini lipid chol-1ox-chol possessing -CH2-CH2-O-CH2-CH2- spacer showed highest transfection activity.
Figure 7(Refer PDF File)
Part 4C: Effect of the Nature of the Spacer on Gene Transfection Properties of Novel Thiocholesterol derived Gemini Cationic Lipids
In this chapter, we present the synthesis and gene transfection properties of three thiocholesterol derived gemini cationic lipids possessing biodegradable disulfide linkages between the cationic ammonium headgroup and thiocholesterol backbone (Figure 8).
We varied the nature of the spacer between cationic headgroups from hydrophobic flexible -(CH2)5- (Lipid TC-5) to hydrophobic rigid (-C6H4-) (Lipid TC-px) to hydrophilic flexible (-CH2-CH2-O-CH2-CH2-) (Lipid TC-1-ox) spacer, to examine the effect of the nature of the spacer on gene transfection properties in different cell lines. Gene transfection properties of these gemini lipids were found to depend upon the nature of the spacer and the cell line. Cytotoxic studies confirmed the nontoxic nature of these lipid:DNA complexes at different N/P ratios used for transfection studies.
Figure 8(Refer PDF File)
Chapter 5 deals with the Synthesis and Gene Transfection Properties of PEI-Cholesterol based Lipopolymers, and Their Interactions with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes and has been divided into two parts
Part 5A: Synthesis and Gene Transfection Properties of PEI-Cholesterol based Lipopolymers
Nine lipopolymers based on low molecular weight Polyethyleneimines (PEI) and cholesterol via an ether linkage between the polymer amine and the cholesterol backbone have been synthesized (Figure 9). Different percentage of cholesterol moieties had been grafted on three types of PEI of molecular weights 800 (Mw), 1200 (Mn), 2000 (Mw). These lipopolymers were studied for gene transfection activities in HeLa cells. All lipopolymer formulations are better transfecting agents and highly serum compatible than commercially available PEI-25KDa. Transfection efficacies and serum compatibility of lipopolymer formulations depend upon the M.W. of PEI used for lipopolymers’ synthesis and percentage of cholesterol grafting on lipopolymers. Cell viability assay showed that PEI-25KDa is highly toxic as compared to all the lipopolymers.
Figure 9(Refer PDF File)
Part 5B: Thermotropic and Fluorescence studies of the Interactions of PEI-Cholesterol based Lipopolymers with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes
The interactions of PEI-cholesterol based lipopolymers (Figure 9) with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes had been examined using fluorescence anisotropy and differential scanning calorimetry (DSC). These lipopolymers were found to quench the chain motion of the acyl chains of DPPC, when incorporated in membranes. Detailed analysis of the fluorescence anisotropy and DSC data indicates that the nature of perturbation induced by lipopolymers is dependent upon the molecular weight of the PEI used and the % of cholesterol grafting on PEI.
|
4 |
Controlled synthesis of polyvinylamine-based (co)polymers for gene transfection / Synthese contrôlée de copolymères à base de polyvinylamine pour le transfert de gènesDréan, Mathilde 10 October 2016 (has links)
Le transfert de gènes consiste en l’introduction d’acides nucléiques au sein de cellules afin de modifier leur activité dans un but essentiellement thérapeutique. Pour préserver le matériel génétique de toute dégradation, il faut recourir à des vecteurs. Parmi ceux-ci, les polymères cationiques sont très prometteurs, en particulier, la polyéthylènimine, considérée comme le vecteur non-viral de référence. Néanmoins, il présente une cytotoxicité élevée. Ainsi, de nombreuses recherches ont pour but d’identifier et de développer de nouveaux polymères combinant efficacité de transfection et haute viabilité cellulaire. Cette thèse vise le développement de méthodes d’ingénierie macromoléculaire donnant accès à une large gamme de dérivés à base de polyvinylamine et l’évaluation de leurs performances en tant que vecteurs de transfection. Différentes techniques de polymérisation radicalaire conventionnelle et contrôlée ont été mises au point afin de synthétiser des (co)polymères à base de polyvinylamine constitués d’amines primaires et secondaires. L’efficacité du transfert d’ADN plasmidique et la viabilité cellulaire ont été évaluées sur des cellules HeLa. L’influence de différents paramètres macromoléculaires sur les performances de transfection a été investiguée. Cette étude a permis de démontrer que certains dérivés de polyvinylamine possédaient une efficacité de transfection aussi élevée que la PEI tout en étant moins toxique. De manière générale, ce travail rend compte du haut potentiel des (co)polyvinylamines en tant que vecteurs pour le transfert de gènes. / Gene transfection consists in the introduction of genetic materials (DNA or RNA) in cells in order to modulate the cell activity, with therapeutic purposes in most cases. To deliver the genetic materials into cells without degradation, vectors are necessary. Among them, cationic polymers are promising candidates. For instance, polyethylenimine has emerged as a gold standard due to its high transfection ability. Nevertheless, this polymer exhibits high cytotoxicity, and current research aims at identifying and developing new polymers with improved cell viability and high gene transfer efficiency. In this context, the aim of this thesis was to develop efficient macromolecular engineering tools to prepare a library of polyvinylamine-containing (co)polymers and to evaluate their performances as DNA carriers. Consequently, free radical polymerization (FRP) and controlled radical polymerization (CRP) have been explored and a series of (co)polyvinylamines, containing primary and secondary amines, as well as vinylimidazole and guanidine moieties, have been synthesized. The transfection efficiency of plasmid DNA (pDNA) and cell viability were evaluated on HeLa cells. The influence of different macromolecular parameters such as molar mass, molar mass distribution and composition, was also studied. The most promising polymers for pDNA transfection were also tested for siRNA delivery and on other cell lines. Overall, several polymers were competitive with PEI regarding the transfection efficiency but were much less toxic. (Co)polyvinylamines, which have often been disregarded for transfection purposes, should definitely be considered as valuable gene carriers.
|
5 |
Simulations Monte Carlo et caractérisations d'un microplasma d'air induisant la poration de membranes cellulaires pour la transfection de gènes / Monte Carlo simulations and experimental characterizations of air microplasma inducing poration of cell membranes for gene transfectionZerrouki, Amel 29 August 2016 (has links)
La transfection est le processus de transfert de gènes (ADN) dans des cellules. L'utilisation des plasmas froids à la pression atmosphérique est un excellent vecteur pour la transfection de gènes. Cela peut conduire à une perméabilisation temporaire de la membrane cellulaire permettant ainsi le processus de transfection de gènes, dans lequel l'ADN et les cellules sont exposées aux flux des espèces actives du plasma (électrons, ions et radicaux neutres). Cependant beaucoup de questions restent sans réponse notamment sur les mécanismes de transfection par plasma, en particulier de formation de pores et de perméabilisation de la membrane par interactions avec les espèces actives du plasma. Ainsi, nous avons développé un modèle Monte Carlo simulant la formation de pores de quelques nm de largeur sous l'effet d'un microplasma d'air. Ce model nécessite a priori des données d'entrées sur la densité des espèces chargées et la température du gaz et des électrons. C'est pourquoi nous avons aussi effectué une caractérisation expérimentale par spectroscopie d'émission optique OES de la micro décharge couronne. On a estimé les températures rotationnelles de plusieurs espèces variant entre (700K-2350K) même si dans nos conditions de plasma hors équilibre la température du gaz demeure ~300K. Les variations spatiales de la température vibrationnelle Tvib et des électrons Te le long de l'espace inter-électrode (de la pointe vers l'électrode de masse) ont aussi été estimées (Tvib:3000K-6500K et Te:6.75 eV-3.4eV). Les densités des ions et des électrons ont été déterminées et valent environ 1015 cm-3. Par ailleurs, sachant qu'il n'existe dans la littérature aucune modélisation consacrée à la perméabilisation de la membrane et la formation de pore par interactions avec les espèces actives du plasma, nous avons développé pour la première fois dans la littérature un modèle spécifique de simulation Monte Carlo pour la poration. Chaque espèce du plasma (électrons, ions, neutres radicaux) est considérée comme une macro-espèce (ou super-particule) représentant un grand nombre de particules. La proportion des espèces du plasma arrivant sur la membrane est estimée à partir de leurs flux, calculés à l'aide d'un modèle de cinétique réactionnelle et par mesures spectroscopiques. La membrane est supposée comme une simple structure multicouche de phospholipides et protéines. Les interactions avec les couches membranaires sont considérées comme étant des super-processus (recombinaison, réflexion, activation, ouverture). Une probabilité d'occurrence de chacun de ces super-processus est assignée à chaque super-particule sur la base d'une étude paramétrique. Le but est d'évaluer les effets des paramètres de simulation initiaux ainsi que l'effet des probabilités d'occurrence de chaque processus sur la formation de pores. Plusieurs résultats importants ont été obtenus. Les électrons jouent un rôle principal sur l'activation et l'ouverture des sites dus à leur forte anisotropie dans la direction avant. Malgré les faibles énergies, proche de celle du gaz, des ions et des radicaux, leur processus de réflexion est déterminant pour élargir et approfondir les dimensions des pores. Il a été montré que le nombre initial de particules NP est le paramètre qui contrôle le plus efficacement la formation de pores. De plus, nous avons observé une corrélation directe entre NP et la durée d'exposition de la membrane cellulaire au plasma. Dans les conditions actuelles de simulation, on a obtenu une dynamique de formation de pores avec des dimensions (diamètres~10nm) compatibles pour la transfection de gènes. Les résultats de simulation Monte Carlo ont été qualitativement validés par une comparaison préliminaire avec les mesures des taux de transfection d'ADN et de survie de cellules fibroblaste de souries. La méthode de Monte Carlo développée dans ce travail représente un outil très prometteur pour une meilleure compréhension des mécanismes de transfection de gènes par plasma. / Gene transfection is a technique of deliberately introducing DNA into cells through the membrane. The cold atmospheric plasma CAP is potentially a new alternative, safe and damage-free technique. It can lead to a transient permeabilization of the cell membrane allowing processes of gene transfection in which DNA and cells are both exposed to fluxes of active plasma species (electrons, ions, and neutral radicals). The mechanisms of more particularly membrane poration are far to be clear and controlled. Therefore, the aim of this thesis is to numerically study the mechanisms of plasma-induced membrane permeabilization using a specific micro-air plasma. More precisely, is to develop and exploit a specific Monte Carlo poration model. This model is aimed to simulate the pore formation of few nm of width through cell membranes when irradiated by micro-air plasma. This developed model requires a prior input data on the density of charged particles and the temperature of gas and electrons. Thus, an experimental characterisation by OES of the micro-air corona discharge is performed. Rotation temperature was determined (between 700K to 2350K) even though under our non-equilibrium conditions Tg remains ~300K. OES also has given the space variation from the high voltage tip to the grounded plate of vibration temperatures (between 3000K up to about 6500K) and Te (about 6.75 eV down to 3.4 eV near the plate). A magnitude around 1015cm-3 for the electron and ion densities have been also determined. Moreover, knowing that there are no literature simulations devoted to membrane permeabilization and pore formation when impacted by plasma actives species, we developed for the first time in literature a specific Monte Carlo poration model. In this framework, we assumed each plasma species (electrons, ions, and neutral radicals) as a super-particle grouping a large number of particles. The species fluxes were estimated from a plasma reaction kinetic model and OES study. The membrane layers were assumed as a simple membrane model superposing four layers of phospholipids and proteins. Each layer was constituted by a succession of super-sites subjected to specific super-processes (recombination, reflection, activation of a site, opening, etc). For an accurate exploitation of our model, the estimation of the probability of occurrence of the whole considered super-processes is absolutely necessary. Thus, a large parametric study is conducted. The aim is to evaluate the effects of the initial simulation parameters as well as the magnitude of the occurrence probabilities of each reaction process on pore formation.
|
6 |
Synthesis And Characterization of Cationic Lipids And Carbon Nanomaterials Based Composites for the Delivery Of Bioactive Oligo/Polynucleotides and Drugs In Vitro and In VivoMisra, Santosh Kumar January 2013 (has links) (PDF)
The biggest hurdle in success of gene and drug therapy is designing and preparation of suitable bio-nanomaterials to carry the desired nucleic acid and drug to the targeted site. The work described in the present thesis encompasses two different approaches for the delivery of bioactive oligo/polynucleotides and drugs in vitro and in vivo using either cationic lipids or their nanocomposites with different carbon nanomaterials. The idea of using carriers for oligo/polynucleotides and drugs came into existence because of numerous physiological barriers in pathway of delivery of naked oligo/polynucleotides or drugs which reduces the overall activity of these bioactives in biological systems. These barriers trigger scientific research toward the preparation of appropriate biomaterials which can overcome the physiological barriers and improve the activity of bioactive oligo/polynucleotides and drugs in cellular systems. Toward this end, the design and synthesis of different cationic lipids and carbon nanomaterials were undertaken as described in seven chapters of the thesis.
A series of novel cationic lipids with structural variability was prepared and used for gene delivery in vitro. They were further tuned chemically to sustain delivery efficiency in high serum percentage during in vitro transfection. These serum compatible lipids were used to perform transfection of reporter gene plasmid and found to be more efficient compared to the some well known commercial products for the same purpose.
Another series of novel lipids were synthesized for the targeted gene delivery in vitro. These tryptophan based cholesteryl lipids were used to prepare mixed liposomes. These mixed liposomes were highly efficient in targeting sigma receptor rich HEK293T over sigma receptor negative HeLa cells. Mixed liposomes were also prepared for selective targeting of αvβ3 and αvβ5 integrins in gene transfection protocol using a palmitoyl-RAFT-RGD4 template.
A mixed liposomal formulation was developed to carry out anti-sense siRNA mediated knockdown of Smad-2 protein with better efficiency compared to some of the best known commercial products for the same purpose. These mixed liposomes were also highly efficient for regression via induction of p53 mediated apoptosis in xenograft tumors developed in nude mice.
Carbon nanomaterials have been extensively explored as nanoscale gene/drug carriers for potential applications. But the challenge is to solubilize these highly hydrophobic materials in aqueous medium for use in biological systems. Although there are reports for covalent modifications of such nanomaterials but it could be done only with the loss of some beneficial features of these materials. Herein a non-covalent technique has been efficiently used to suspend single walled carbon nanotubes in water using biocompatible cationic lipids. These nanosuspensions were used to complex plasmid DNA and transfect them in vitro. They proved to be highly serum compatible DNA carriers which did not drop the efficiency even in very high percentage of serum. Similarly exfoliated graphene was modified with cationic lipid and serum components to improve IC50 of Tamoxifen citrate and Methotrexate to a considerable extent in vitro. The improved Methotrexate formulations were highly efficient for regression in size of xenograft tumors developed in nude mice.
Thus, the present thesis entails generation of cationic lipids and carbon nanomaterials based nanocomposites which were not only highly biocompatible themselves but their efficiency was found many fold better compare to some of the best commercial delivery agents. These were useful for the delivery of various bioactive oligo/polynucleotides and drugs in vitro and in vivo.
|
7 |
Nanoparticules Chitosane-PEG-FA-ADN pour la thérapie génique non virale et application du gène de l’IL-1Ra dans un modèle expérimental d’arthrite rhumatoïdeJreyssaty, Christian 04 1900 (has links)
La thérapie génique représente l'un des défis de la médecine des prochaines décennies dont la réussite dépend de la capacité d'acheminer l'ADN thérapeutique jusqu'à sa cible. Des structures non virales ont été envisagées, dont le chitosane, polymère cationique qui se combine facilement à l’ADN. Une fois le complexe formé, l’ADN est protégé des nucléases qui le dégradent.
Le premier objectif de l'étude est de synthétiser et ensuite évaluer différentes nanoparticules de chitosane et choisir la mieux adaptée pour une efficacité de transfection sélective in vitro dans les cellules carcinomes épidermoïdes (KB).
Le deuxième objectif de l'étude est d'examiner in vivo les effets protecteurs du gène de l'IL-1Ra (bloqueur naturel de la cytokine inflammatoire, l’Interleukine-1β) complexé aux nanoparticules de chitosane sélectionnées dans un modèle d'arthrite induite par un adjuvant (AIA) chez le rat.
Les nanoparticules varient par le poids moléculaire du chitosane (5, 25 et 50 kDa), et la présence ou l’absence de l’acide folique (FA).
Des mesures macroscopiques de l’inflammation seront évaluées ainsi que des mesures de concentrations de l’Interleukine-1β, Prostaglandine E2 et IL-1Ra humaine secrétés dans le sérum.
Les nanoparticules Chitosane-ADN en présence de l’acide folique et avec du chitosane de poids moléculaire de 25 kDa, permettent une meilleure transfection in vitro.
Les effets protecteurs des nanoparticules contenant le gène thérapeutique étaient évidents suite à la détection de l’IL-1Ra dans le sérum, la baisse d'expressions des facteurs inflammatoires, l’Interleukine-1 et la Prostaglandine-E2 ainsi que la diminution macroscopique de l’inflammation.
Le but de cette étude est de développer notre méthode de thérapie génique non virale pour des applications cliniques pour traiter l’arthrite rhumatoïde et d’autres maladies humaines. / Considered to be one of the medical challenges of the coming decade, the success of gene therapy depends on the ability to deliver therapeutic DNA to target cells. Non-viral polymers, such as chitosan (Ch), a cationic polymer, can be easily combined with DNA. Once a complex is formed, DNA is protected from degradation by nucleases.
The first objective of this study was to define the characteristics of the best-suited Ch nanoparticle for maximum selective transfection in human epidermoid carcinoma (KB) cells in vitro. Nanoparticles varied by the presence or absence of folic acid (FA) and Ch’s molecular weight (MW 5, 25 and 50 kDa). They were then selected and combined with interleukin-1 receptor antagonist (IL-1Ra) gene, a natural blocker of the inflammatory cytokine interleukin-1beta (IL-1β). The second objective was to inject these carriers by the hydrodynamic method in a rat model of adjuvant-induced arthritis and to evaluate the inhibitory effects of IL-1Ra against inflammation in vivo.
Ch-DNA nanoparticles with FA and Ch25 demonstrated selective transfection and significantly increased it in KB cells in vitro. The inhibitory effects of IL-1Ra gene therapy in vivo were evident from lower expression levels of inflammatory factors (IL-1 and prostaglandin E2) and decreased macroscopic limb inflammation. The results also revealed the presence of human recombinant IL-1Ra protein in rat sera. Non-viral gene therapy with Ch-PEG-FA-DNA nanoparticles containing the IL-1Ra gene appears to significantly decrease inflammation in this experimental model of arthritis.
|
8 |
Nanoparticules Chitosane-PEG-FA-ADN pour la thérapie génique non virale et application du gène de l’IL-1Ra dans un modèle expérimental d’arthrite rhumatoïdeJreyssaty, Christian 04 1900 (has links)
La thérapie génique représente l'un des défis de la médecine des prochaines décennies dont la réussite dépend de la capacité d'acheminer l'ADN thérapeutique jusqu'à sa cible. Des structures non virales ont été envisagées, dont le chitosane, polymère cationique qui se combine facilement à l’ADN. Une fois le complexe formé, l’ADN est protégé des nucléases qui le dégradent.
Le premier objectif de l'étude est de synthétiser et ensuite évaluer différentes nanoparticules de chitosane et choisir la mieux adaptée pour une efficacité de transfection sélective in vitro dans les cellules carcinomes épidermoïdes (KB).
Le deuxième objectif de l'étude est d'examiner in vivo les effets protecteurs du gène de l'IL-1Ra (bloqueur naturel de la cytokine inflammatoire, l’Interleukine-1β) complexé aux nanoparticules de chitosane sélectionnées dans un modèle d'arthrite induite par un adjuvant (AIA) chez le rat.
Les nanoparticules varient par le poids moléculaire du chitosane (5, 25 et 50 kDa), et la présence ou l’absence de l’acide folique (FA).
Des mesures macroscopiques de l’inflammation seront évaluées ainsi que des mesures de concentrations de l’Interleukine-1β, Prostaglandine E2 et IL-1Ra humaine secrétés dans le sérum.
Les nanoparticules Chitosane-ADN en présence de l’acide folique et avec du chitosane de poids moléculaire de 25 kDa, permettent une meilleure transfection in vitro.
Les effets protecteurs des nanoparticules contenant le gène thérapeutique étaient évidents suite à la détection de l’IL-1Ra dans le sérum, la baisse d'expressions des facteurs inflammatoires, l’Interleukine-1 et la Prostaglandine-E2 ainsi que la diminution macroscopique de l’inflammation.
Le but de cette étude est de développer notre méthode de thérapie génique non virale pour des applications cliniques pour traiter l’arthrite rhumatoïde et d’autres maladies humaines. / Considered to be one of the medical challenges of the coming decade, the success of gene therapy depends on the ability to deliver therapeutic DNA to target cells. Non-viral polymers, such as chitosan (Ch), a cationic polymer, can be easily combined with DNA. Once a complex is formed, DNA is protected from degradation by nucleases.
The first objective of this study was to define the characteristics of the best-suited Ch nanoparticle for maximum selective transfection in human epidermoid carcinoma (KB) cells in vitro. Nanoparticles varied by the presence or absence of folic acid (FA) and Ch’s molecular weight (MW 5, 25 and 50 kDa). They were then selected and combined with interleukin-1 receptor antagonist (IL-1Ra) gene, a natural blocker of the inflammatory cytokine interleukin-1beta (IL-1β). The second objective was to inject these carriers by the hydrodynamic method in a rat model of adjuvant-induced arthritis and to evaluate the inhibitory effects of IL-1Ra against inflammation in vivo.
Ch-DNA nanoparticles with FA and Ch25 demonstrated selective transfection and significantly increased it in KB cells in vitro. The inhibitory effects of IL-1Ra gene therapy in vivo were evident from lower expression levels of inflammatory factors (IL-1 and prostaglandin E2) and decreased macroscopic limb inflammation. The results also revealed the presence of human recombinant IL-1Ra protein in rat sera. Non-viral gene therapy with Ch-PEG-FA-DNA nanoparticles containing the IL-1Ra gene appears to significantly decrease inflammation in this experimental model of arthritis.
|
Page generated in 0.1009 seconds