• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Klinische Studie und experimentelle Untersuchungen zur nicht-viralen Gentherapie solider Tumoren

Kobelt, Dennis 04 October 2012 (has links)
Krebs gehört zu den häufigsten Todesursachen weltweit. Ein großer Hoffnungsträger für die Behandlung maligner Tumore ist die Gentherapie. Die nicht-virale Gentherapie gilt als sicherere Alternative zur viralen Gentherapie. Für den nicht viralen Gentransfer sind sowohl Vektor als auch Gentransfertechnologie von entscheidender Bedeutung. Im Rahmen dieser Arbeit wurde die Gentransfereffizienz und Sicherheit der Jet-Injektion in einer klinischen Phase I Gentransferstudie mit Hilfe des Swiss-Injektors untersucht. Es konnte gezeigt werden, dass diese Technologie sicher klinisch angewendet werden kann, dass jedoch die Sicherheit der Vektoren und vor allem die Gentransfereffizienz weiter optimiert werden müssen. Ausgehend von diesen Ergebnissen wurden optimierte nicht-virale Vektoren (Minicircle, MIDGE) miteinander und mit ihren parentalen Plasmiden verglichen. Mit Hilfe des MIDGE Vektors konnte die höchste Transgenexpression aufgrund einer erhöhten Transkription erzielt werden. In Vorbereitung der klinischen Anwendung des MIDGE-Vektors wurde die Kombination von hTNF-alpha Gentransfer und Vindesin Chemotherapie untersucht. Auch hier zeigte der MIDGE-Vektor eine erhöhte in vitro Genexpression, die in vitro zu einer erhöhten Zytotoxizität von Vindesin aufgrund einer verstärkten Aktivierung der Apoptose führte. Auch in vivo konnte die verbesserte hTNF-alpha-Genexpression des MIDGE-Vektors nach Jet-Injektion gezeigt werden. Dies führte in Kombination mit Vindesin zu einem signifikant reduzierten Tumorwachstum. Durch Analyse der systemischen Vektorverteilung im Blut und in den Organen sowie in einer präklinischen toxikologischen Untersuchung konnte die sichere Anwendung des MIDGE-Vektors bestätigt werden. Abschließend wurden weitere Anwendungsmöglichkeiten des MIDGE-Vektors für die stabile Genexpression und für die Verwendung in kombinierten Gentransferprotokollen untersucht. / Cancer is one leading causes of death worldwide. Gene therapy belongs to the promising options for treatment of malignant tumors. The non-viral gene therapy is known as safer alternative to the viral gene therapy. For non-viral gene transfer the vector and the transfer technology are of crucial importance. As part of this work a clinical trial was performed to assess efficiency and safety of the non-viral jet-injection. It was shown, that this technology can be used safely in a clinical setting. As a result of this clinical trial we concluded, that vector safety and especially efficiency need further improvements. Based on this optimized non-viral vectors (minicircle, MIDGE) were compared with each other and their respective parental plasmids. The MIDGE vector showed the highest transgene expression due to increased transcription. In preparation of a clinical trial the combined treatment of hTNF-alpha gene transfer and Vindesine chemotherapy was analyzed. Again, the MIDGE vector showed the highest transgene expression. This expression led to an increased cytotoxicity of Vindesine in vitro due to an elevated apoptosis signaling. Furthermore, these results could be assigned to an in vivo model. The increased hTNF-alpha expression after MIDGE vector jet-injection in combination with Vindesine led to a significant decrease in tumor growth. Detailed analysis of systemic vector distribution in the blood and organs as well as the preclinical toxicity evaluation showed the safety of the non-viral MIDGE vector. Initial experiments were performed to show further options for stable gene expression and combined gene transfer protocols using the MIDGE vector.
2

DNA Nanoparticles for Non-viral Gene Therapy: Mechanistic Studies and Targeting

Sun, Wenchao 26 June 2012 (has links)
No description available.
3

Nanoparticules Chitosane-PEG-FA-ADN pour la thérapie génique non virale et application du gène de l’IL-1Ra dans un modèle expérimental d’arthrite rhumatoïde

Jreyssaty, Christian 04 1900 (has links)
La thérapie génique représente l'un des défis de la médecine des prochaines décennies dont la réussite dépend de la capacité d'acheminer l'ADN thérapeutique jusqu'à sa cible. Des structures non virales ont été envisagées, dont le chitosane, polymère cationique qui se combine facilement à l’ADN. Une fois le complexe formé, l’ADN est protégé des nucléases qui le dégradent. Le premier objectif de l'étude est de synthétiser et ensuite évaluer différentes nanoparticules de chitosane et choisir la mieux adaptée pour une efficacité de transfection sélective in vitro dans les cellules carcinomes épidermoïdes (KB). Le deuxième objectif de l'étude est d'examiner in vivo les effets protecteurs du gène de l'IL-1Ra (bloqueur naturel de la cytokine inflammatoire, l’Interleukine-1β) complexé aux nanoparticules de chitosane sélectionnées dans un modèle d'arthrite induite par un adjuvant (AIA) chez le rat. Les nanoparticules varient par le poids moléculaire du chitosane (5, 25 et 50 kDa), et la présence ou l’absence de l’acide folique (FA). Des mesures macroscopiques de l’inflammation seront évaluées ainsi que des mesures de concentrations de l’Interleukine-1β, Prostaglandine E2 et IL-1Ra humaine secrétés dans le sérum. Les nanoparticules Chitosane-ADN en présence de l’acide folique et avec du chitosane de poids moléculaire de 25 kDa, permettent une meilleure transfection in vitro. Les effets protecteurs des nanoparticules contenant le gène thérapeutique étaient évidents suite à la détection de l’IL-1Ra dans le sérum, la baisse d'expressions des facteurs inflammatoires, l’Interleukine-1 et la Prostaglandine-E2 ainsi que la diminution macroscopique de l’inflammation. Le but de cette étude est de développer notre méthode de thérapie génique non virale pour des applications cliniques pour traiter l’arthrite rhumatoïde et d’autres maladies humaines. / Considered to be one of the medical challenges of the coming decade, the success of gene therapy depends on the ability to deliver therapeutic DNA to target cells. Non-viral polymers, such as chitosan (Ch), a cationic polymer, can be easily combined with DNA. Once a complex is formed, DNA is protected from degradation by nucleases. The first objective of this study was to define the characteristics of the best-suited Ch nanoparticle for maximum selective transfection in human epidermoid carcinoma (KB) cells in vitro. Nanoparticles varied by the presence or absence of folic acid (FA) and Ch’s molecular weight (MW 5, 25 and 50 kDa). They were then selected and combined with interleukin-1 receptor antagonist (IL-1Ra) gene, a natural blocker of the inflammatory cytokine interleukin-1beta (IL-1β). The second objective was to inject these carriers by the hydrodynamic method in a rat model of adjuvant-induced arthritis and to evaluate the inhibitory effects of IL-1Ra against inflammation in vivo. Ch-DNA nanoparticles with FA and Ch25 demonstrated selective transfection and significantly increased it in KB cells in vitro. The inhibitory effects of IL-1Ra gene therapy in vivo were evident from lower expression levels of inflammatory factors (IL-1 and prostaglandin E2) and decreased macroscopic limb inflammation. The results also revealed the presence of human recombinant IL-1Ra protein in rat sera. Non-viral gene therapy with Ch-PEG-FA-DNA nanoparticles containing the IL-1Ra gene appears to significantly decrease inflammation in this experimental model of arthritis.
4

Nanoparticules Chitosane-PEG-FA-ADN pour la thérapie génique non virale et application du gène de l’IL-1Ra dans un modèle expérimental d’arthrite rhumatoïde

Jreyssaty, Christian 04 1900 (has links)
La thérapie génique représente l'un des défis de la médecine des prochaines décennies dont la réussite dépend de la capacité d'acheminer l'ADN thérapeutique jusqu'à sa cible. Des structures non virales ont été envisagées, dont le chitosane, polymère cationique qui se combine facilement à l’ADN. Une fois le complexe formé, l’ADN est protégé des nucléases qui le dégradent. Le premier objectif de l'étude est de synthétiser et ensuite évaluer différentes nanoparticules de chitosane et choisir la mieux adaptée pour une efficacité de transfection sélective in vitro dans les cellules carcinomes épidermoïdes (KB). Le deuxième objectif de l'étude est d'examiner in vivo les effets protecteurs du gène de l'IL-1Ra (bloqueur naturel de la cytokine inflammatoire, l’Interleukine-1β) complexé aux nanoparticules de chitosane sélectionnées dans un modèle d'arthrite induite par un adjuvant (AIA) chez le rat. Les nanoparticules varient par le poids moléculaire du chitosane (5, 25 et 50 kDa), et la présence ou l’absence de l’acide folique (FA). Des mesures macroscopiques de l’inflammation seront évaluées ainsi que des mesures de concentrations de l’Interleukine-1β, Prostaglandine E2 et IL-1Ra humaine secrétés dans le sérum. Les nanoparticules Chitosane-ADN en présence de l’acide folique et avec du chitosane de poids moléculaire de 25 kDa, permettent une meilleure transfection in vitro. Les effets protecteurs des nanoparticules contenant le gène thérapeutique étaient évidents suite à la détection de l’IL-1Ra dans le sérum, la baisse d'expressions des facteurs inflammatoires, l’Interleukine-1 et la Prostaglandine-E2 ainsi que la diminution macroscopique de l’inflammation. Le but de cette étude est de développer notre méthode de thérapie génique non virale pour des applications cliniques pour traiter l’arthrite rhumatoïde et d’autres maladies humaines. / Considered to be one of the medical challenges of the coming decade, the success of gene therapy depends on the ability to deliver therapeutic DNA to target cells. Non-viral polymers, such as chitosan (Ch), a cationic polymer, can be easily combined with DNA. Once a complex is formed, DNA is protected from degradation by nucleases. The first objective of this study was to define the characteristics of the best-suited Ch nanoparticle for maximum selective transfection in human epidermoid carcinoma (KB) cells in vitro. Nanoparticles varied by the presence or absence of folic acid (FA) and Ch’s molecular weight (MW 5, 25 and 50 kDa). They were then selected and combined with interleukin-1 receptor antagonist (IL-1Ra) gene, a natural blocker of the inflammatory cytokine interleukin-1beta (IL-1β). The second objective was to inject these carriers by the hydrodynamic method in a rat model of adjuvant-induced arthritis and to evaluate the inhibitory effects of IL-1Ra against inflammation in vivo. Ch-DNA nanoparticles with FA and Ch25 demonstrated selective transfection and significantly increased it in KB cells in vitro. The inhibitory effects of IL-1Ra gene therapy in vivo were evident from lower expression levels of inflammatory factors (IL-1 and prostaglandin E2) and decreased macroscopic limb inflammation. The results also revealed the presence of human recombinant IL-1Ra protein in rat sera. Non-viral gene therapy with Ch-PEG-FA-DNA nanoparticles containing the IL-1Ra gene appears to significantly decrease inflammation in this experimental model of arthritis.

Page generated in 0.0746 seconds