1 |
Likelihood-Based Confidence Bands for a ROC CurveMuchemedzi, Reuben 28 June 2006 (has links)
No description available.
|
2 |
Métodos para estimar prevalências ajustadasBarbieri, Natália Bordin January 2016 (has links)
Objetivo: Apresentar e discutir métodos para estimar prevalências ajustadas em pesquisas clínicas e epidemiológicas, bem como desenvolver rotinas computacionais em SAS e R. Métodos: No contexto de estudo transversal, foi simulada uma amostra de 2.000 observações independentes, considerando o desfecho dicotômico diabetes, sexo como a variável de exposição e idade como variável de ajuste. As estimativas de prevalências ajustadas (IC 95%) foram estimadas pelos métodos de predição condicional e marginal, utilizando as rotinas desenvolvidas em SAS e R. O método Delta foi usado para construir os intervalos de confiança. Os resultados foram comparados com aqueles do SUDAAN (SAS-Callable), Stata e a macro %ADJ_PROP (SAS). Resultados: No exemplo simulado, 68,2% são do sexo feminino e a idade média (DP) foi 57,6 (5,0) anos, sendo 54,2 (3,9) anos em homens e 59,2 (4,6) anos em mulheres. A estimativa da prevalência global do desfecho foi de 25,3% (IC 95%:23,4-27,3); sendo 13,8% (IC 95%:11,7-16,7) e 30,7% (IC 95%:28,3-33,2), respectivamente para homens e mulheres. As estimativas de prevalências ajustadas por idade, por meio do método de predição condicional, foram de 19,6% (IC 95%:16,2-23,6) para homens, e 23,6% (IC 95%:21,2-26,1) para mulheres. Pelo método de predição marginal, as estimativas foram de 22,4% (IC 95%:18,7-26,5) para homens, e 26,3% (IC 95%:24,1-28,6) para mulheres. Conclusão: A discrepância entre as estimativas não ajustadas é devida ao confundimento pela idade. Estimativas livres de confundimento podem ser obtidas por meio das prevalências ajustadas pela idade. No entanto, a estimativa pelo método de predição condicional não engloba a prevalência global. Em virtude disso, o método de predição marginal é, geralmente, mais adequado. A rotina desenvolvida na versão para R é uma alternativa aos softwares comerciais. / Objective: To present and discuss methods to estimate adjusted prevalences for clinical and epidemiological research, and develop computational routines in SAS and R. Methods: In the context of cross-sectional study, it was simulated a sample of 2,000 independent observations, considering the dichotomous outcome diabetes, sex as the exposure variable and age as an adjustment variable. Adjusted prevalences were estimated by the conditional and marginal methods, using routines developed in SAS and R. Confidence intervals were constructed using the Delta method. The results were compared with those of the SUDAAN (SAS-callable), Stata and macro %ADJ_PROP (SAS). Results: In simulated example, 68.2% are female and the mean (SD) age was 57.6 (5.00) years old, being that 54.2 (3.94) years for men and 59.2 (4.60) years in women. The estimated global prevalence of outcome was 25.3% (CI 95%: 23.4-27.3) and 13.8% (CI 95%: 11.7-16.7) and 30.7% (CI 95%: 28.3-33.2), respectively for men and women. Estimates of adjusted prevalence for age, through the conditional method, were 19.6% (CI 95%: 16.2-23.6) for men, and 23.6% (CI 95%: 21,2-26.1) for women. For marginal method, the estimates were 22.4% (CI 95%: 18.7-26.5) for men and 26.3% (CI 95%: 24.1-28.6) for women. Conclusion: The observed discrepancy in estimates by sex, unadjusted, can be attributed to confounding due to difference in age distribution between sexes. Comparable estimates (without confounding) of the prevalences can be obtained through prevalence adjusted for age. However, the estimate for the conditional method does not comprise the global prevalence. As a result, the marginal method is in general more suitable. The developed routines can be useful for estimating adjusted prevalences, particularly the R version (an alternative to commercial software).
|
3 |
Estimation Techniques for Nonlinear Functions of the Steady-State Mean in Computer SimulationChang, Byeong-Yun 08 December 2004 (has links)
A simulation study consists of several steps such as data collection, coding
and model verification, model validation, experimental design, output data analysis,
and implementation. Our research concentrates on output data analysis. In this field,
many researchers have studied how to construct confidence intervals for the mean u
of a stationary stochastic process. However, the estimation of the value of a nonlinear
function f(u) has not received a lot of attention in the simulation literature. Towards
this goal, a batch-means-based methodology was proposed by Munoz and Glynn (1997).
Their approach did not consider consistent estimators for the variance of the point
estimator for f(u). This thesis, however, will consider consistent variance estimation
techniques to construct confidence intervals for f(u). Specifically, we propose methods
based on the combination of the delta method and nonoverlapping batch means
(NBM), standardized time series (STS), or a combination of both. Our approaches
are tested on moving average, autoregressive, and M/M/1 queueing processes. The
results show that the resulting confidence intervals (CIs) perform often better than
the CIs based on the method of Munoz and Glynn in terms of coverage, the mean of
their CI half-width, and the variance of their CI half-width.
|
4 |
Métodos para estimar prevalências ajustadasBarbieri, Natália Bordin January 2016 (has links)
Objetivo: Apresentar e discutir métodos para estimar prevalências ajustadas em pesquisas clínicas e epidemiológicas, bem como desenvolver rotinas computacionais em SAS e R. Métodos: No contexto de estudo transversal, foi simulada uma amostra de 2.000 observações independentes, considerando o desfecho dicotômico diabetes, sexo como a variável de exposição e idade como variável de ajuste. As estimativas de prevalências ajustadas (IC 95%) foram estimadas pelos métodos de predição condicional e marginal, utilizando as rotinas desenvolvidas em SAS e R. O método Delta foi usado para construir os intervalos de confiança. Os resultados foram comparados com aqueles do SUDAAN (SAS-Callable), Stata e a macro %ADJ_PROP (SAS). Resultados: No exemplo simulado, 68,2% são do sexo feminino e a idade média (DP) foi 57,6 (5,0) anos, sendo 54,2 (3,9) anos em homens e 59,2 (4,6) anos em mulheres. A estimativa da prevalência global do desfecho foi de 25,3% (IC 95%:23,4-27,3); sendo 13,8% (IC 95%:11,7-16,7) e 30,7% (IC 95%:28,3-33,2), respectivamente para homens e mulheres. As estimativas de prevalências ajustadas por idade, por meio do método de predição condicional, foram de 19,6% (IC 95%:16,2-23,6) para homens, e 23,6% (IC 95%:21,2-26,1) para mulheres. Pelo método de predição marginal, as estimativas foram de 22,4% (IC 95%:18,7-26,5) para homens, e 26,3% (IC 95%:24,1-28,6) para mulheres. Conclusão: A discrepância entre as estimativas não ajustadas é devida ao confundimento pela idade. Estimativas livres de confundimento podem ser obtidas por meio das prevalências ajustadas pela idade. No entanto, a estimativa pelo método de predição condicional não engloba a prevalência global. Em virtude disso, o método de predição marginal é, geralmente, mais adequado. A rotina desenvolvida na versão para R é uma alternativa aos softwares comerciais. / Objective: To present and discuss methods to estimate adjusted prevalences for clinical and epidemiological research, and develop computational routines in SAS and R. Methods: In the context of cross-sectional study, it was simulated a sample of 2,000 independent observations, considering the dichotomous outcome diabetes, sex as the exposure variable and age as an adjustment variable. Adjusted prevalences were estimated by the conditional and marginal methods, using routines developed in SAS and R. Confidence intervals were constructed using the Delta method. The results were compared with those of the SUDAAN (SAS-callable), Stata and macro %ADJ_PROP (SAS). Results: In simulated example, 68.2% are female and the mean (SD) age was 57.6 (5.00) years old, being that 54.2 (3.94) years for men and 59.2 (4.60) years in women. The estimated global prevalence of outcome was 25.3% (CI 95%: 23.4-27.3) and 13.8% (CI 95%: 11.7-16.7) and 30.7% (CI 95%: 28.3-33.2), respectively for men and women. Estimates of adjusted prevalence for age, through the conditional method, were 19.6% (CI 95%: 16.2-23.6) for men, and 23.6% (CI 95%: 21,2-26.1) for women. For marginal method, the estimates were 22.4% (CI 95%: 18.7-26.5) for men and 26.3% (CI 95%: 24.1-28.6) for women. Conclusion: The observed discrepancy in estimates by sex, unadjusted, can be attributed to confounding due to difference in age distribution between sexes. Comparable estimates (without confounding) of the prevalences can be obtained through prevalence adjusted for age. However, the estimate for the conditional method does not comprise the global prevalence. As a result, the marginal method is in general more suitable. The developed routines can be useful for estimating adjusted prevalences, particularly the R version (an alternative to commercial software).
|
5 |
Métodos para estimar prevalências ajustadasBarbieri, Natália Bordin January 2016 (has links)
Objetivo: Apresentar e discutir métodos para estimar prevalências ajustadas em pesquisas clínicas e epidemiológicas, bem como desenvolver rotinas computacionais em SAS e R. Métodos: No contexto de estudo transversal, foi simulada uma amostra de 2.000 observações independentes, considerando o desfecho dicotômico diabetes, sexo como a variável de exposição e idade como variável de ajuste. As estimativas de prevalências ajustadas (IC 95%) foram estimadas pelos métodos de predição condicional e marginal, utilizando as rotinas desenvolvidas em SAS e R. O método Delta foi usado para construir os intervalos de confiança. Os resultados foram comparados com aqueles do SUDAAN (SAS-Callable), Stata e a macro %ADJ_PROP (SAS). Resultados: No exemplo simulado, 68,2% são do sexo feminino e a idade média (DP) foi 57,6 (5,0) anos, sendo 54,2 (3,9) anos em homens e 59,2 (4,6) anos em mulheres. A estimativa da prevalência global do desfecho foi de 25,3% (IC 95%:23,4-27,3); sendo 13,8% (IC 95%:11,7-16,7) e 30,7% (IC 95%:28,3-33,2), respectivamente para homens e mulheres. As estimativas de prevalências ajustadas por idade, por meio do método de predição condicional, foram de 19,6% (IC 95%:16,2-23,6) para homens, e 23,6% (IC 95%:21,2-26,1) para mulheres. Pelo método de predição marginal, as estimativas foram de 22,4% (IC 95%:18,7-26,5) para homens, e 26,3% (IC 95%:24,1-28,6) para mulheres. Conclusão: A discrepância entre as estimativas não ajustadas é devida ao confundimento pela idade. Estimativas livres de confundimento podem ser obtidas por meio das prevalências ajustadas pela idade. No entanto, a estimativa pelo método de predição condicional não engloba a prevalência global. Em virtude disso, o método de predição marginal é, geralmente, mais adequado. A rotina desenvolvida na versão para R é uma alternativa aos softwares comerciais. / Objective: To present and discuss methods to estimate adjusted prevalences for clinical and epidemiological research, and develop computational routines in SAS and R. Methods: In the context of cross-sectional study, it was simulated a sample of 2,000 independent observations, considering the dichotomous outcome diabetes, sex as the exposure variable and age as an adjustment variable. Adjusted prevalences were estimated by the conditional and marginal methods, using routines developed in SAS and R. Confidence intervals were constructed using the Delta method. The results were compared with those of the SUDAAN (SAS-callable), Stata and macro %ADJ_PROP (SAS). Results: In simulated example, 68.2% are female and the mean (SD) age was 57.6 (5.00) years old, being that 54.2 (3.94) years for men and 59.2 (4.60) years in women. The estimated global prevalence of outcome was 25.3% (CI 95%: 23.4-27.3) and 13.8% (CI 95%: 11.7-16.7) and 30.7% (CI 95%: 28.3-33.2), respectively for men and women. Estimates of adjusted prevalence for age, through the conditional method, were 19.6% (CI 95%: 16.2-23.6) for men, and 23.6% (CI 95%: 21,2-26.1) for women. For marginal method, the estimates were 22.4% (CI 95%: 18.7-26.5) for men and 26.3% (CI 95%: 24.1-28.6) for women. Conclusion: The observed discrepancy in estimates by sex, unadjusted, can be attributed to confounding due to difference in age distribution between sexes. Comparable estimates (without confounding) of the prevalences can be obtained through prevalence adjusted for age. However, the estimate for the conditional method does not comprise the global prevalence. As a result, the marginal method is in general more suitable. The developed routines can be useful for estimating adjusted prevalences, particularly the R version (an alternative to commercial software).
|
6 |
A Reformulation of the Delta Method and the Subconvexity ProblemLeung, Wing Hong 10 August 2022 (has links)
No description available.
|
7 |
Estimation of the standard error and confidence interval of the indirect effect in multiple mediator modelsBriggs, Nancy Elizabeth 22 September 2006 (has links)
No description available.
|
8 |
Statistical contribution to the virtual multicriteria optimisation of combinatorial molecules libraries and to the validation and application of QSAR modelsLe Bailly de Tilleghem, Céline 07 January 2008 (has links)
This thesis develops an integrated methodology based on the desirability index and QSAR models to virtually optimise molecules. Statistical and algorithmic tools are proposed to search in huge collections of compounds obtained by combinatorial chemistry the most promising ones.
First, once the drugability properties of interest have been precisely defined, QSAR models are developed to mimic the relationship between those optimised properties and chemical descriptors of molecules. The literature on QSAR models is reviewed and the statistical tools to validate the models, analyse their fit and their predictive power are detailed.
Even if a QSAR model has been validated and sounds highly predictive, we emphasise the importance of measuring extrapolation by the definition of its applicability domain and quantifying the prediction error for a given molecule. Indeed, QSAR models are often massively applied to predict drugability properties for libraries of new compounds without taking care of the reliability of each individual prediction.
Then, a desirability index measures the compromise between the multiple estimated drugability properties and allows to rank the molecules in the combinatorial library in preference order. The propagation of the models prediction error on the desirability index is quantified by a confidence interval that can be constructed under general conditions for linear regression, PLS regression or regression tree models. This fulfills an important lack of the desirability index literature that considers it as exact.
Finally, a new efficient algorithm (WEALD) is proposed to virtually screen the combinatorial library and retain the molecule with the highest desirability indexes.
For each explored molecule, it is checked if it belongs to the applicability domain of each QSAR models.
In addition, the uncertainty of the desirability index of each explored molecule is taken into account by gathering molecules that can not be distinguished from the optimal one due to the propagation of QSAR models prediction error. Those molecules do not have a significantly smaller desirability than the optimal molecule found by WEALD.
This constitutes another important improvement in the use of desirability index as a tool to compare solutions in a multicriteria optimisation problem.
This integrated methodology has been developed in the context of lead optimisation and is illustrated on a real combinatorial library provided by Eli Lilly and Company. This is the main application of the thesis. Nevertheless, as the results on desirability index uncertainty are applicable under general conditions, they can be applied to any multicriteria optimisation problem, like it often occurs in industry.
|
9 |
"Uma aplicação industrial de regressão binária com erros na variável explicativa" / "An industrial application of binary regression with errors-in-variable explanatory"Favari, Daniel Fernando de 22 June 2006 (has links)
Neste trabalho, aplicamos um modelo de regressão binária com erros de medição na variável explicativa para analisar sistemas de medição do tipo atributo. Para isto, utilizamos o modelo logístico com erros na variável, para o qual obtemos as estimativas de máxima verossimilhança via o algoritmo EM e a matriz de informação de Fisher observada. Além disso, fizemos um estudo de simulação para compararmos o método analítico e os modelos logístico sem erros na variável (ingênuo) e logístico com erros na variável. Finalmente, aplicamos nossa metodologia para avaliarmos um sistema de medição passa/não passa da maior montadora de motores Diesel (MWM International). / In this work, we apply a study of binary regression model with errors-in-variable to analyze attributive measurement systems. For this, we use the logistic model with errors-in-variable to obtain parameter estimates of maximum likelihood through EM algorithm and the observed Fisher information matrix. In addition we do a simulation study to compare analytic method and the logistic model with and without measurement errors-in-variable. Finally, we apply our methodology to evaluate a attributive measurement system for the largest Diesel motor company of the world (MWM International).
|
10 |
"Uma aplicação industrial de regressão binária com erros na variável explicativa" / "An industrial application of binary regression with errors-in-variable explanatory"Daniel Fernando de Favari 22 June 2006 (has links)
Neste trabalho, aplicamos um modelo de regressão binária com erros de medição na variável explicativa para analisar sistemas de medição do tipo atributo. Para isto, utilizamos o modelo logístico com erros na variável, para o qual obtemos as estimativas de máxima verossimilhança via o algoritmo EM e a matriz de informação de Fisher observada. Além disso, fizemos um estudo de simulação para compararmos o método analítico e os modelos logístico sem erros na variável (ingênuo) e logístico com erros na variável. Finalmente, aplicamos nossa metodologia para avaliarmos um sistema de medição passa/não passa da maior montadora de motores Diesel (MWM International). / In this work, we apply a study of binary regression model with errors-in-variable to analyze attributive measurement systems. For this, we use the logistic model with errors-in-variable to obtain parameter estimates of maximum likelihood through EM algorithm and the observed Fisher information matrix. In addition we do a simulation study to compare analytic method and the logistic model with and without measurement errors-in-variable. Finally, we apply our methodology to evaluate a attributive measurement system for the largest Diesel motor company of the world (MWM International).
|
Page generated in 0.0544 seconds